Spaces:
Runtime error
Runtime error
File size: 10,240 Bytes
d101062 9c5d561 327dc47 6b4e294 46d2fcf e3f032e d101062 547723f d101062 8bd5dc7 46d2fcf e3f032e 327dc47 e3f032e e05e986 e3f032e bd1ec8b e3f032e 46d2fcf e3f032e 46d2fcf e3f032e 46d2fcf e3f032e e05e986 ce193d2 46d2fcf d101062 547723f 8bd5dc7 d101062 8bd5dc7 e05e986 d101062 e05e986 46d2fcf 547723f 46d2fcf e3f032e e05e986 e3f032e e05e986 46d2fcf e05e986 46d2fcf 547723f 46d2fcf e05e986 46d2fcf e3f032e d101062 8bd5dc7 e05e986 8bd5dc7 547723f 327dc47 9c5d561 d101062 e05e986 d101062 e05e986 d101062 9c5d561 e3f032e 46d2fcf e3f032e 46d2fcf d101062 e3f032e e05e986 d101062 327dc47 46d2fcf 547723f 46d2fcf 547723f e05e986 46d2fcf 547723f e3f032e 46d2fcf e3f032e 547723f e3f032e 46d2fcf e3f032e d101062 46d2fcf e3f032e 46d2fcf e05e986 e3f032e 547723f e3f032e 547723f e3f032e 547723f e3f032e 9c5d561 46d2fcf 9c5d561 547723f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import spaces
import gradio as gr
import re
from PIL import Image
import io
import base64
import os
import json
import numpy as np
import torch
from diffusers import FluxImg2ImgPipeline
from cryptography.fernet import Fernet
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
# Encryption setup
def generate_key(password, salt=None):
if salt is None:
salt = os.urandom(16)
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=salt,
iterations=100000,
)
key = base64.urlsafe_b64encode(kdf.derive(password.encode()))
return key, salt
def encrypt_image(image, password="default_password"):
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
# Generate key for encryption
key, salt = generate_key(password)
cipher = Fernet(key)
# Encrypt the image bytes
encrypted_data = cipher.encrypt(img_byte_arr)
# Return the encrypted data and salt (needed for decryption)
return {
'encrypted_data': base64.b64encode(encrypted_data).decode('utf-8'),
'salt': base64.b64encode(salt).decode('utf-8'),
'original_width': image.width,
'original_height': image.height
}
def decrypt_image(encrypted_data_dict, password="default_password"):
# Extract the encrypted data and salt
encrypted_data = base64.b64decode(encrypted_data_dict['encrypted_data'])
salt = base64.b64decode(encrypted_data_dict['salt'])
# Regenerate the key using the provided salt
key, _ = generate_key(password, salt)
cipher = Fernet(key)
# Decrypt the data
decrypted_data = cipher.decrypt(encrypted_data)
# Convert bytes back to PIL Image
image = Image.open(io.BytesIO(decrypted_data))
return image
def sanitize_prompt(prompt):
# Allow only alphanumeric characters, spaces, and basic punctuation
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
sanitized_prompt = allowed_chars.sub("", prompt)
return sanitized_prompt
def convert_to_fit_size(original_width_and_height, maximum_size=2048):
width, height = original_width_and_height
if width <= maximum_size and height <= maximum_size:
return width, height
if width > height:
scaling_factor = maximum_size / width
else:
scaling_factor = maximum_size / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return new_width, new_height
def adjust_to_multiple_of_32(width: int, height: int):
width = width - (width % 32)
height = height - (height % 32)
return width, height
@spaces.GPU(duration=120)
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4,
encrypt_password="default_password", progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Starting")
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
if image is None:
print("empty input image returned")
return None
generator = torch.Generator(device).manual_seed(seed)
fit_width, fit_height = convert_to_fit_size(image.size)
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
image = image.resize((width, height), Image.LANCZOS)
output = pipe(
prompt=prompt,
image=image,
generator=generator,
strength=strength,
width=width,
height=height,
guidance_scale=0,
num_inference_steps=num_inference_steps,
max_sequence_length=256
)
pil_image = output.images[0]
new_width, new_height = pil_image.size
if (new_width != fit_width) or (new_height != fit_height):
resized_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
return resized_image
return pil_image
output = process_img2img(image, prompt, strength, seed, inference_step)
# Encrypt the output image
if output is not None:
encrypted_output = encrypt_image(output, encrypt_password)
# For display purposes, we'll create a placeholder image with text indicating encryption
placeholder = Image.new('RGB', (output.width, output.height), color=(220, 220, 220))
return {
"display_image": placeholder,
"encrypted_data": encrypted_output
}
return None
def save_encrypted_image(encrypted_data, filename="encrypted_image.enc"):
with open(filename, 'w') as f:
json.dump(encrypted_data, f)
return f"Encrypted image saved as {filename}"
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css = """
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
.encryption-notice {
background-color: #f0f0f0;
padding: 15px;
border-radius: 5px;
margin-top: 10px;
text-align: center;
}
"""
with gr.Blocks(css=css, elem_id="demo-container") as demo:
# Store encrypted data in a state variable
encrypted_output_state = gr.State(None)
with gr.Column():
gr.HTML(read_file("demo_header.html"))
gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(
height=800,
sources=['upload', 'clipboard'],
image_mode='RGB',
elem_id="image_upload",
type="pil",
label="Upload"
)
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
value="a women",
placeholder="Your prompt (what you want in place of what is erased)",
elem_id="prompt"
)
btn = gr.Button("Img2Img", elem_id="run_button", variant="primary")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(equal_height=True):
strength = gr.Number(
value=0.75, minimum=0, maximum=0.75, step=0.01, label="Strength"
)
seed = gr.Number(
value=100, minimum=0, step=1, label="Seed"
)
inference_step = gr.Number(
value=4, minimum=1, step=4, label="Inference Steps"
)
encrypt_password = gr.Textbox(
label="Encryption Password",
value="default_password",
type="password"
)
id_input = gr.Text(label="Name", visible=False)
with gr.Column():
# Display placeholder image
image_out = gr.Image(
height=800,
sources=[],
label="Output (Encrypted)",
elem_id="output-img",
format="jpg"
)
encryption_notice = gr.HTML(
'<div class="encryption-notice">'
'The output image is encrypted. Use the Save button to download the encrypted file.'
'</div>'
)
save_btn = gr.Button("Save Encrypted Image")
save_result = gr.Text(label="Save Result")
# Examples section
gr.Examples(
examples=[
["examples/draw_input.jpg", "examples/draw_output.jpg", "a women, eyes closed, mouth opened"],
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg", "a women, eyes closed, mouth opened"],
["examples/gimp_input.jpg", "examples/gimp_output.jpg", "a women, hand on neck"],
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg", "a women, hand on neck"]
],
inputs=[image, image_out, prompt],
)
gr.HTML(read_file("demo_footer.html"))
# Process images and encrypt outputs
def handle_image_generation(image, prompt, strength, seed, inference_step, encrypt_password):
result = process_images(image, prompt, strength, seed, inference_step, encrypt_password)
if result:
return result["display_image"], result["encrypted_data"]
return None, None
# >>>> CHANGED: Use .click() and .submit() with api_name
btn.click(
fn=handle_image_generation,
inputs=[image, prompt, strength, seed, inference_step, encrypt_password],
outputs=[image_out, encrypted_output_state],
api_name="/process_images" # Exposes handle_image_generation as /process_images
)
prompt.submit(
fn=handle_image_generation,
inputs=[image, prompt, strength, seed, inference_step, encrypt_password],
outputs=[image_out, encrypted_output_state],
api_name="/process_images" # Same endpoint
)
# <<<< END CHANGE
def handle_save_encrypted(encrypted_data):
if encrypted_data:
import tempfile
fd, path = tempfile.mkstemp(suffix='.encimg')
with os.fdopen(fd, 'w') as f:
json.dump(encrypted_data, f)
return f"Encrypted image saved to {path}"
return "No encrypted image to save"
save_btn.click(
fn=handle_save_encrypted,
inputs=[encrypted_output_state],
outputs=[save_result]
)
if __name__ == "__main__":
demo.launch(share=True, show_error=True)
|