Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load model and tokenizer locally | |
model_name = "GoofyLM/gonzalez-v1" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, # Use float16 for efficiency | |
device_map="auto" # Automatically distribute across available GPUs/devices | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Format messages for the model | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Convert messages to model input format | |
chat_template = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Tokenize the input | |
inputs = tokenizer(chat_template, return_tensors="pt").to(model.device) | |
# Generate response with streaming | |
input_length = inputs.input_ids.shape[1] | |
generated_tokens = [] | |
# Set up generation parameters | |
gen_kwargs = { | |
"max_new_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"do_sample": temperature > 0, | |
"pad_token_id": tokenizer.eos_token_id, | |
} | |
# Stream the generation | |
response = "" | |
for output in model.generate( | |
**inputs, | |
**gen_kwargs, | |
streamer=transformers.TextStreamer(tokenizer, skip_prompt=True), | |
): | |
# Skip input tokens | |
if len(output) <= input_length: | |
continue | |
# Get new tokens | |
new_tokens = output[input_length:] | |
decoded = tokenizer.decode(new_tokens, skip_special_tokens=True) | |
response = decoded | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a Gonzalez-v1.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |