File size: 19,480 Bytes
f9d8231
b560569
896ae69
b0464a9
87a87e7
1ba4c1b
67742c4
 
f7fc39b
2a3b22e
d252c6d
adb3bbe
538b42b
179ea1f
2a3b22e
 
 
 
67742c4
2a3b22e
9d99925
 
 
 
 
 
 
b0464a9
2a3b22e
 
 
b0464a9
2a3b22e
b0464a9
 
 
2a3b22e
67742c4
 
 
2a3b22e
 
f9d8231
67742c4
 
 
 
 
2a3b22e
67742c4
 
b0464a9
 
 
2a3b22e
b0464a9
3038c7b
2a3b22e
 
 
 
f9d8231
 
 
67742c4
f9d8231
 
67742c4
f9d8231
 
67742c4
f9d8231
2a3b22e
67742c4
2a3b22e
 
67742c4
2a3b22e
67742c4
2a3b22e
 
 
67742c4
 
 
2a3b22e
67742c4
 
2a3b22e
67742c4
 
2a3b22e
 
67742c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3038c7b
9f71fb3
2a3b22e
67742c4
 
2a3b22e
9d99925
67742c4
2a3b22e
67742c4
9f71fb3
 
67742c4
2a3b22e
67742c4
9d99925
 
2a3b22e
9d99925
2a3b22e
 
67742c4
f9d8231
67742c4
 
 
 
 
 
 
 
9d99925
 
67742c4
 
9d99925
 
f9d8231
 
9d99925
 
 
 
f9d8231
9d99925
 
 
 
 
 
 
 
 
 
 
 
4a9a646
9d99925
 
9f71fb3
67742c4
 
 
9f71fb3
2a3b22e
9d99925
 
 
67742c4
 
9f71fb3
b0464a9
 
2a3b22e
67742c4
 
 
 
b0464a9
4cc3230
b0464a9
 
2a3b22e
b0464a9
 
 
 
 
2a3b22e
b0464a9
 
2a3b22e
adb3bbe
 
179ea1f
67742c4
 
 
 
 
 
 
 
 
 
 
 
 
adb3bbe
3038c7b
 
adb3bbe
b0464a9
67742c4
f9d8231
179ea1f
2a3b22e
adb3bbe
 
2a3b22e
67742c4
faf26ff
2a3b22e
67742c4
2a3b22e
67742c4
2a3b22e
 
faf26ff
2a3b22e
f9d8231
67742c4
2a3b22e
 
 
 
 
67742c4
2a3b22e
 
 
 
 
 
 
faf26ff
67742c4
 
faf26ff
67742c4
 
 
 
faf26ff
67742c4
adb3bbe
f9d8231
adb3bbe
f9d8231
179ea1f
a9b7f24
b0464a9
88d3a6e
b0464a9
2051c7a
b0464a9
f466d89
b0464a9
6d43d2f
b0464a9
179ea1f
adb3bbe
 
179ea1f
b0464a9
 
adb3bbe
06d22e5
538b42b
f9d8231
538b42b
f9d8231
b0464a9
538b42b
 
179ea1f
b8b7e00
538b42b
2a3b22e
 
 
 
538b42b
adb3bbe
179ea1f
2a3b22e
b0464a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# -- coding: utf-8 --
import gradio as gr
import json
import os
import logging
import html
import pandas as pd # Ensure pandas is imported
from datetime import datetime # Used for pd.Timestamp

# Import functions from your custom modules
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
from gradio_utils import get_url_user_token
# Updated import to include fetch_posts_from_bubble
from Bubble_API_Calls import (
    fetch_linkedin_token_from_bubble,
    bulk_upload_to_bubble,
    fetch_linkedin_posts_data_from_bubble
)
from Linkedin_Data_API_Calls import (
    fetch_linkedin_posts_core,
    fetch_comments,
    analyze_sentiment,
    compile_detailed_posts,
    prepare_data_for_bubble
)

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

def check_token_status(token_state):
    """Checks the status of the LinkedIn token."""
    return "βœ… Token available" if token_state and token_state.get("token") else "❌ Token not available"

def process_and_store_bubble_token(url_user_token, org_urn, token_state):
    """
    Processes user token, fetches LinkedIn token, fetches Bubble posts,
    and determines if an initial fetch or update is needed for LinkedIn posts.
    Updates token state and UI for the sync button.
    """
    logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
    
    new_state = token_state.copy() if token_state else {
        "token": None, "client_id": None, "org_urn": None, 
        "bubble_posts_df": None, "fetch_count_for_api": 0 
    }
    new_state.update({"org_urn": org_urn, "bubble_posts_df": new_state.get("bubble_posts_df"), "fetch_count_for_api": new_state.get("fetch_count_for_api", 0)})

    # Default button update: hidden and non-interactive
    button_update = gr.update(visible=False, interactive=False, value="πŸ”„ Sync LinkedIn Posts")

    client_id = os.environ.get("Linkedin_client_id")
    if not client_id:
        logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
        new_state["client_id"] = "ENV VAR MISSING"
    else:
        new_state["client_id"] = client_id

    if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
        logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
        try:
            parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
            if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
                new_state["token"] = parsed_linkedin_token
                logging.info("βœ… LinkedIn Token successfully fetched from Bubble.")
            else:
                new_state["token"] = None
                logging.warning(f"❌ Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}")
        except Exception as e:
            new_state["token"] = None
            logging.error(f"❌ Exception while fetching LinkedIn token from Bubble: {e}")
    else:
        new_state["token"] = None
        logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")

    # Fetch posts from Bubble
    current_org_urn = new_state.get("org_urn")
    bubble_posts_df = None 
    if current_org_urn:
        logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
        try:
            fetched_df, error_message = fetch_linkedin_posts_data_from_bubble(current_org_urn, "LI_posts")
            if error_message:
                logging.warning(f"Error reported by fetch_linkedin_posts_data_from_bubble: {error_message}. Treating as no data.")
            else:
                bubble_posts_df = fetched_df
            new_state["bubble_posts_df"] = bubble_posts_df
        except Exception as e:
            logging.error(f"❌ Error fetching posts from Bubble: {e}. Treating as no data.")
            new_state["bubble_posts_df"] = None # Ensure it's None on error
    else:
        logging.warning("Org URN not available in state. Cannot fetch posts from Bubble.")

    # Logic for determining fetch/update based on bubble_posts_df
    # DATE_COLUMN_NAME is now 'published_at' and contains ISO datetime strings.
    DATE_COLUMN_NAME = 'published_at' 
    DEFAULT_INITIAL_FETCH_COUNT = 100 # Standard number of posts for initial fetch

    if new_state["bubble_posts_df"] is None or new_state["bubble_posts_df"].empty:
        logging.info(f"ℹ️ No posts found in Bubble or DataFrame is empty. Button to fetch initial {DEFAULT_INITIAL_FETCH_COUNT} posts will be visible.")
        new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
        button_update = gr.update(value=f"πŸ”„ Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} LinkedIn Posts", visible=True, interactive=True)
    else:
        try:
            df_for_date_check = new_state["bubble_posts_df"].copy() # Use a copy to avoid SettingWithCopyWarning
            if DATE_COLUMN_NAME not in df_for_date_check.columns:
                logging.warning(f"Date column '{DATE_COLUMN_NAME}' not found in Bubble posts DataFrame. Assuming initial fetch of {DEFAULT_INITIAL_FETCH_COUNT} posts.")
                new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
                button_update = gr.update(value=f"πŸ”„ Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} (Date Column Missing)", visible=True, interactive=True)
            elif df_for_date_check[DATE_COLUMN_NAME].isnull().all():
                logging.warning(f"Date column '{DATE_COLUMN_NAME}' contains all null values. Assuming initial fetch of {DEFAULT_INITIAL_FETCH_COUNT} posts.")
                new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
                button_update = gr.update(value=f"πŸ”„ Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} (Date Column Empty)", visible=True, interactive=True)
            else:
                # Convert ISO datetime strings to datetime objects
                df_for_date_check[DATE_COLUMN_NAME] = pd.to_datetime(df_for_date_check[DATE_COLUMN_NAME], errors='coerce', utc=True)
                last_post_date_utc = df_for_date_check[DATE_COLUMN_NAME].dropna().max()

                if pd.isna(last_post_date_utc):
                    logging.warning(f"No valid dates found in '{DATE_COLUMN_NAME}' after conversion. Assuming initial fetch of {DEFAULT_INITIAL_FETCH_COUNT} posts.")
                    new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
                    button_update = gr.update(value=f"πŸ”„ Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} (No Valid Dates)", visible=True, interactive=True)
                else:
                    today_utc = pd.Timestamp('now', tz='UTC').normalize() 
                    last_post_date_utc_normalized = last_post_date_utc.normalize()

                    time_difference_days = (today_utc - last_post_date_utc_normalized).days
                    logging.info(f"Last post date (UTC, normalized): {last_post_date_utc_normalized}, Today (UTC, normalized): {today_utc}, Difference: {time_difference_days} days.")

                    if time_difference_days >= 7:
                        num_weeks = max(1, time_difference_days // 7) 
                        fetch_count = num_weeks * 10
                        new_state['fetch_count_for_api'] = fetch_count
                        button_label = f"πŸ”„ Update Last {num_weeks} Week(s) (~{fetch_count} Posts)"
                        logging.info(f"Data is {time_difference_days} days old. Update needed for {num_weeks} weeks, ~{fetch_count} posts.")
                        button_update = gr.update(value=button_label, visible=True, interactive=True)
                    else:
                        logging.info(f"Data is fresh ({time_difference_days} days old). No update needed now.")
                        new_state['fetch_count_for_api'] = 0 
                        button_update = gr.update(visible=False, interactive=False)
        except Exception as e:
            logging.error(f"Error processing dates from Bubble posts: {e}. Defaulting to initial fetch of {DEFAULT_INITIAL_FETCH_COUNT} posts.")
            new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
            button_update = gr.update(value=f"πŸ”„ Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} (Date Error)", visible=True, interactive=True)
            
    token_status_message = check_token_status(new_state)
    logging.info(f"Token processing complete. LinkedIn Token Status: {token_status_message}. Button update: {button_update}. Fetch count for API: {new_state['fetch_count_for_api']}")
    return token_status_message, new_state, button_update

def guarded_fetch_posts(token_state):
    """
    Fetches LinkedIn posts based on 'fetch_count_for_api' in token_state, 
    analyzes them, and uploads to Bubble.
    """
    logging.info("Starting guarded_fetch_posts process.")
    if not token_state or not token_state.get("token"):
        logging.error("Access denied for guarded_fetch_posts. No LinkedIn token available.")
        return "<p style='color:red; text-align:center;'>❌ Access denied. LinkedIn token not available.</p>"

    client_id = token_state.get("client_id")
    token_dict = token_state.get("token")
    org_urn = token_state.get('org_urn')
    fetch_count_value = token_state.get('fetch_count_for_api') 

    if not org_urn:
        logging.error("Organization URN (org_urn) not found in token_state for guarded_fetch_posts.")
        return "<p style='color:red; text-align:center;'>❌ Configuration error: Organization URN missing.</p>"
    if not client_id or client_id == "ENV VAR MISSING":
        logging.error("Client ID not found or missing in token_state for guarded_fetch_posts.")
        return "<p style='color:red; text-align:center;'>❌ Configuration error: LinkedIn Client ID missing.</p>"

    if fetch_count_value == 0: 
        logging.info("guarded_fetch_posts called, but fetch_count_for_api is 0. Data is fresh.")
        return "<p style='color:green; text-align:center;'>βœ… Data is already up-to-date. No new posts fetched.</p>"
    
    if fetch_count_value is None: # Should ideally not happen with new logic, but as a safeguard
        logging.warning("fetch_count_for_api is None in guarded_fetch_posts. This might indicate an issue. Defaulting to fetching a standard amount if your API supports it or all.")
        # Depending on your API, None might mean fetch all or a default.
        # If your API requires a specific count for "all", you might need to adjust here or in fetch_linkedin_posts_core.

    try:
        logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}. Fetch count parameter for API: {fetch_count_value}")
        processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn, count=fetch_count_value)

        if not processed_raw_posts:
            logging.info("No posts found to process via LinkedIn API after step 1.")
            return "<p style='color:orange; text-align:center;'>ℹ️ No new LinkedIn posts found to process at this time.</p>"

        post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
        logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")

        logging.info("Step 2: Fetching comments via LinkedIn API.")
        all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)

        logging.info("Step 3: Analyzing sentiment.")
        sentiments_per_post = analyze_sentiment(all_comments_data)

        logging.info("Step 4: Compiling detailed posts.")
        detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post)

        logging.info("Step 5: Preparing data for Bubble.")
        li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data)

        logging.info("Step 6: Uploading data to Bubble.")
        bulk_upload_to_bubble(li_posts, "LI_posts")
        bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
        bulk_upload_to_bubble(li_post_comments, "LI_post_comments")

        action_performed = f"Initial data fetch (~{fetch_count_value} posts)" if fetch_count_value == DEFAULT_INITIAL_FETCH_COUNT else f"Data update (target: ~{fetch_count_value} posts)"
        logging.info(f"Successfully completed: {action_performed}. Uploaded posts and comments to Bubble.")
        return f"<p style='color:green; text-align:center;'>βœ… {action_performed} complete. Posts and comments from LinkedIn uploaded to Bubble.</p>"

    except ValueError as ve:
        logging.error(f"ValueError during LinkedIn data processing: {ve}")
        return f"<p style='color:red; text-align:center;'>❌ Error: {html.escape(str(ve))}</p>"
    except Exception as e:
        logging.exception("An unexpected error occurred in guarded_fetch_posts.")
        return "<p style='color:red; text-align:center;'>❌ An unexpected error occurred. Please check logs.</p>"

def guarded_fetch_dashboard(token_state):
    if not token_state or not token_state.get("token"):
        return "❌ Access denied. No token available for dashboard."
    if token_state.get("bubble_posts_df") is not None and not token_state["bubble_posts_df"].empty:
        return f"<p style='text-align: center;'>Dashboard would show {len(token_state['bubble_posts_df'])} posts from Bubble.</p>"
    else:
        return "<p style='text-align: center; color: #555;'>No posts loaded from Bubble yet for the dashboard.</p>"


def guarded_fetch_analytics(token_state):
    if not token_state or not token_state.get("token"):
        return ("❌ Access denied. No token available for analytics.",
                None, None, None, None, None, None, None)
    return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))

def run_mentions_and_load(token_state):
    if not token_state or not token_state.get("token"):
        return ("❌ Access denied. No token available for mentions.", None)
    return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))

# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Post Viewer & Analytics") as app:

    # Define DEFAULT_INITIAL_FETCH_COUNT here if needed by guarded_fetch_posts for its messages,
    # or ensure it's passed/accessible if logic depends on it there.
    # For now, it's only used within process_and_store_bubble_token.
    DEFAULT_INITIAL_FETCH_COUNT = 100 


    token_state = gr.State(value={
        "token": None, 
        "client_id": None, 
        "org_urn": None, 
        "bubble_posts_df": None,
        "fetch_count_for_api": 0 
    })

    gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
    gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")

    url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")    
    org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)

    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])

    with gr.Tabs():
        with gr.TabItem("1️⃣ Dashboard & Sync"):
            gr.Markdown("System checks for existing data in Bubble. The button below will activate if new posts need to be fetched or updated from LinkedIn.")
            
            sync_posts_to_bubble_btn = gr.Button(
                value="πŸ”„ Sync LinkedIn Posts", 
                variant="primary",
                visible=False,    
                interactive=False
            )
            
            dashboard_html_output = gr.HTML(
                "<p style='text-align: center; color: #555;'>System initializing... "
                "Checking for existing data in Bubble and LinkedIn token.</p>"
            )
            
            org_urn_display.change(
                fn=process_and_store_bubble_token,
                inputs=[url_user_token_display, org_urn_display, token_state],
                outputs=[status_box, token_state, sync_posts_to_bubble_btn]    
            )
            url_user_token_display.change(
                fn=process_and_store_bubble_token,
                inputs=[url_user_token_display, org_urn_display, token_state],
                outputs=[status_box, token_state, sync_posts_to_bubble_btn]
            )

            sync_posts_to_bubble_btn.click(
                fn=guarded_fetch_posts,    
                inputs=[token_state],    
                outputs=[dashboard_html_output]
            ).then( 
                fn=process_and_store_bubble_token,
                inputs=[url_user_token_display, org_urn_display, token_state],
                outputs=[status_box, token_state, sync_posts_to_bubble_btn]
            )
            
        with gr.TabItem("2️⃣ Analytics"):
            gr.Markdown("View follower count and monthly gains for your organization (requires LinkedIn token).")
            fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
            follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for LinkedIn token...</p>")

            with gr.Row():
                follower_plot, growth_plot = gr.Plot(), gr.Plot()
            with gr.Row():
                eng_rate_plot = gr.Plot()
            with gr.Row():
                interaction_plot = gr.Plot()
            with gr.Row():
                eb_plot = gr.Plot()
            with gr.Row():
                mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()

            fetch_analytics_btn.click(
                fn=guarded_fetch_analytics,
                inputs=[token_state],
                outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
                         interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
            )

        with gr.TabItem("3️⃣ Mentions"):
            gr.Markdown("Analyze sentiment of recent posts that mention your organization (requires LinkedIn token).")
            fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
            mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for LinkedIn token...</p>")
            mentions_plot = gr.Plot()
            fetch_mentions_btn.click(
                fn=run_mentions_and_load,
                inputs=[token_state],
                outputs=[mentions_html, mentions_plot]
            )
            
    app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
    gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)


if __name__ == "__main__":
    if not os.environ.get("Linkedin_client_id"):
        logging.warning("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly for LinkedIn API calls.")
    app.launch(server_name="0.0.0.0", server_port=7860, share=True)