Spaces:
Running
Running
File size: 13,217 Bytes
6277fe0 b560569 575b933 b0464a9 87a87e7 21988b0 791c130 8add36b f7fc39b 575b933 826a2a1 2e2e19a 8add36b 575b933 21988b0 2e2e19a 21988b0 8add36b 21988b0 8add36b 21988b0 2601f1c 21988b0 5a483f8 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 21988b0 1fa587a 21988b0 7aa6c73 2a3b22e 3b4dccb 2a3b22e 2e2e19a 1644cc1 77179e2 1644cc1 77179e2 2e2e19a 77179e2 8add36b adb3bbe 21988b0 67742c4 a342a6b 6a8e128 21988b0 6a8e128 2601f1c 67742c4 6277fe0 21988b0 8add36b 21988b0 adb3bbe 21988b0 7aa6c73 21988b0 a342a6b 21988b0 6277fe0 21988b0 a342a6b 575b933 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 791c130 21988b0 8add36b 6277fe0 21988b0 8add36b 1644cc1 21988b0 8add36b 21988b0 8add36b 21988b0 1644cc1 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 21988b0 1644cc1 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 21988b0 8add36b 2e2e19a 8add36b 2e2e19a 8add36b 2e2e19a 8add36b 21988b0 8add36b 21988b0 1644cc1 21988b0 8add36b 1644cc1 2e2e19a 21988b0 1644cc1 8add36b 2e2e19a 8add36b 2e2e19a 8add36b 21988b0 8add36b 21988b0 3e26bda 21988b0 8add36b 1644cc1 266ae82 adb3bbe 21988b0 8add36b 21988b0 a6bc02b 21988b0 8add36b 21988b0 1fa587a 8add36b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# app.py
import gradio as gr
import pandas as pd
import os
import logging
from collections import defaultdict
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib
# --- Module Imports ---
from utils.gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
PLOT_ID_TO_FORMULA_KEY_MAP,
LINKEDIN_CLIENT_ID_ENV_VAR,
BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR,
BUBBLE_API_ENDPOINT_ENV_VAR
)
# UPDATED: Using the new data loading function from the refactored state manager
from services.state_manager import load_data_from_bubble
from ui.ui_generators import (
display_main_dashboard,
build_analytics_tab_plot_area,
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS
# --- CHATBOT MODULE IMPORTS ---
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions
from features.chatbot.chatbot_handler import generate_llm_response
# --- AGENTIC PIPELINE (DISPLAY ONLY) IMPORTS ---
try:
# UPDATED: Using the new display function to show pre-computed results
from run_agentic_pipeline import load_and_display_agentic_results
from ui.insights_ui_generator import format_single_okr_for_display
AGENTIC_MODULES_LOADED = True
except ImportError as e:
logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.")
AGENTIC_MODULES_LOADED = False
# Placeholder for the new function name if imports fail
def load_and_display_agentic_results(*args, **kwargs):
# This tuple matches the expected number of outputs for the event handler
return "Modules not loaded.", "Modules not loaded.", "Modules not loaded.", None, [], [], "Error"
def format_single_okr_for_display(okr_data, **kwargs):
return "Agentic modules not loaded. OKR display unavailable."
# --- ANALYTICS TAB MODULE IMPORT ---
from services.analytics_tab_module import AnalyticsTab
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# API Key Setup
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
if user_provided_api_key:
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
else:
logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.")
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
# --- STATE MANAGEMENT ---
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"bubble_agentic_analysis_data": pd.DataFrame(), # To store agentic results from Bubble
"url_user_token_temp_storage": None,
# Config values remain useful for display components
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
# States for analytics tab chatbot
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({})
# States for agentic results display
orchestration_raw_results_st = gr.State(None) # Stores reconstructed report/OKR dict from Bubble
key_results_for_selection_st = gr.State([]) # Stores list of dicts for KR selection
selected_key_result_ids_st = gr.State([]) # Stores unique_kr_ids selected by the user
# --- UI LAYOUT ---
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
# Hidden components to receive URL parameters
url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False)
org_urn_display = gr.Textbox(label="Org URN (Hidden)", interactive=False, visible=False)
# General status display
status_box = gr.Textbox(label="Status", interactive=False, value="Initializing...")
# Load URL parameters on page load
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
# UPDATED: Simplified initial data loading sequence
def initial_data_load_sequence(url_token, org_urn_val, current_state):
# This function now only loads data from Bubble and updates the main dashboard display
status_msg, new_state = load_data_from_bubble(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, dashboard_content
# Instantiate the AnalyticsTab module (no changes needed here)
analytics_icons = {'bomb': BOMB_ICON, 'explore': EXPLORE_ICON, 'formula': FORMULA_ICON, 'active': ACTIVE_ICON}
analytics_tab_instance = AnalyticsTab(
token_state=token_state,
chat_histories_st=chat_histories_st,
current_chat_plot_id_st=current_chat_plot_id_st,
plot_data_for_chatbot_st=plot_data_for_chatbot_st,
plot_id_to_formula_map=PLOT_ID_TO_FORMULA_KEY_MAP,
plot_formulas_data=PLOT_FORMULAS,
icons=analytics_icons,
fn_build_plot_area=build_analytics_tab_plot_area,
fn_update_plot_figures=update_analytics_plots_figures,
fn_create_placeholder_plot=create_placeholder_plot,
fn_get_initial_insight=get_initial_insight_prompt_and_suggestions,
fn_generate_llm_response=generate_llm_response
)
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard", id="tab_dashboard"):
# REMOVED: Sync button and related UI components. This tab is now just for the main dashboard.
gr.Markdown("I dati visualizzati in questo pannello sono caricati direttamente da Bubble.io.")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
# Use the AnalyticsTab module to create Tab 2
analytics_tab_instance.create_tab_ui()
# Tab 3: Agentic Analysis Report
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
gr.Markdown("## 🤖 Comprehensive Analysis Report (from Bubble.io)")
agentic_pipeline_status_md = gr.Markdown("Status: Loading report data...", visible=True)
gr.Markdown("Questo report è stato pre-generato da un agente AI e caricato da Bubble.io.")
agentic_report_display_md = gr.Markdown("The AI-generated report will be displayed here once loaded.")
if not AGENTIC_MODULES_LOADED:
gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.")
# Tab 4: Agentic OKRs & Tasks
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (from Bubble.io)")
gr.Markdown("Basato sull'analisi AI pre-generata, l'agente ha proposto i seguenti OKR. Seleziona i Key Results per dettagli.")
if not AGENTIC_MODULES_LOADED:
gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Suggested Key Results")
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
with gr.Column(scale=3):
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo il caricamento dei dati.")
# This handler logic for the CheckboxGroup remains the same, as it operates on loaded data.
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
return gr.update(value="Nessun dato di analisi caricato o moduli non disponibili.")
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs")
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
return gr.update(value="Nessun OKR trovato nei dati di analisi caricati.")
okrs_list = actionable_okrs_dict["okrs"]
if not all_krs_for_selection or not isinstance(all_krs_for_selection, list):
return gr.update(value="Errore interno: formato dati KR non valido.")
kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
selected_krs_by_okr_idx = defaultdict(list)
if selected_kr_unique_ids:
for kr_unique_id in selected_kr_unique_ids:
if kr_unique_id in kr_id_to_indices:
okr_idx, kr_idx = kr_id_to_indices[kr_unique_id]
selected_krs_by_okr_idx[okr_idx].append(kr_idx)
output_md_parts = []
for okr_idx, okr_data in enumerate(okrs_list):
if not selected_kr_unique_ids: # Show all if nothing is selected
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
elif okr_idx in selected_krs_by_okr_idx: # Show only OKRs that have a selected KR
accepted_indices = selected_krs_by_okr_idx.get(okr_idx)
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices, okr_main_index=okr_idx))
final_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else "Nessun OKR corrisponde alla selezione corrente."
return gr.update(value=final_md)
if AGENTIC_MODULES_LOADED:
key_results_cbg.change(
fn=update_okr_display_on_selection,
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
outputs=[okr_detail_display_md]
)
# --- EVENT HANDLING (SIMPLIFIED) ---
# Define the output list for loading agentic results
agentic_display_outputs = [
agentic_report_display_md,
key_results_cbg,
okr_detail_display_md,
orchestration_raw_results_st,
selected_key_result_ids_st,
key_results_for_selection_st,
agentic_pipeline_status_md
]
# This is the main event chain that runs when the app loads
initial_load_event = org_urn_display.change(
fn=initial_data_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, dashboard_display_html],
show_progress="full"
)
# After initial data is loaded, refresh the analytics graphs
initial_load_event.then(
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
inputs=[
token_state,
analytics_tab_instance.date_filter_selector,
analytics_tab_instance.custom_start_date_picker,
analytics_tab_instance.custom_end_date_picker,
chat_histories_st
],
outputs=analytics_tab_instance.graph_refresh_outputs_list,
show_progress="full"
# Then, load and display the pre-computed agentic results
).then(
fn=load_and_display_agentic_results, # UPDATED function call
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
outputs=agentic_display_outputs,
show_progress="minimal"
)
if __name__ == "__main__":
# Environment variable checks remain important
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' is not set.")
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
logging.warning("WARNING: One or more Bubble environment variables are not set.")
if not AGENTIC_MODULES_LOADED:
logging.warning("CRITICAL: Agentic pipeline display modules failed to load. Tabs 3 and 4 will be non-functional.")
if not os.environ.get("GEMINI_API_KEY"):
logging.warning("WARNING: 'GEMINI_API_KEY' is not set. This may be needed for chatbot features.")
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)
|