Spaces:
Running
Running
File size: 44,869 Bytes
37335e7 7dc216d 37335e7 7dc216d 37335e7 f023388 37335e7 f023388 37335e7 7dc216d 37335e7 7dc216d 37335e7 7dc216d e715ed9 7dc216d e715ed9 7dc216d 936dfac f023388 7dc216d f023388 7dc216d c2e55b1 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 2c911b1 7dc216d f023388 2c911b1 7dc216d 2c911b1 7dc216d 2c911b1 7dc216d f023388 2c911b1 7dc216d 2c911b1 f023388 2c911b1 f023388 2c911b1 7dc216d 2c911b1 7dc216d 2c911b1 f023388 2c911b1 7dc216d 2c911b1 f023388 2c911b1 f023388 7dc216d f023388 7dc216d e715ed9 f023388 7dc216d f023388 37335e7 7dc216d f023388 97314bb f023388 97314bb 7dc216d f023388 97314bb f023388 37335e7 7dc216d 97314bb 7dc216d f023388 37335e7 f023388 37335e7 97314bb b5ba1c7 97314bb 7dc216d f023388 37335e7 7dc216d 97314bb f023388 7dc216d 97314bb 7dc216d 97314bb 37335e7 7dc216d 97314bb f023388 7dc216d 97314bb 7dc216d 97314bb f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d 37335e7 7dc216d f023388 7dc216d f023388 7dc216d 37335e7 f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 37335e7 f023388 7dc216d f023388 37335e7 7dc216d f023388 37335e7 7dc216d 37335e7 f023388 7dc216d f023388 7dc216d f023388 37335e7 f023388 37335e7 f023388 7dc216d 37335e7 7dc216d 37335e7 f023388 7dc216d 37335e7 f023388 7dc216d f023388 2166780 7dc216d 37335e7 f023388 37335e7 f1fb052 f023388 f1fb052 7dc216d f023388 f1fb052 2166780 7dc216d 2e6a5c1 7dc216d 2e6a5c1 7dc216d f1fb052 f023388 7dc216d f023388 7dc216d f1fb052 f023388 7dc216d f023388 7dc216d f1fb052 f023388 7dc216d f1fb052 f023388 7dc216d 955ed8d 7dc216d d33a3a6 7dc216d d33a3a6 7dc216d d33a3a6 7dc216d d33a3a6 7dc216d d33a3a6 7dc216d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 |
import json
import requests
import html
import time # Added for potential rate limiting if needed
from datetime import datetime
from collections import defaultdict
from urllib.parse import quote # Added for URL encoding
from transformers import pipeline
from sessions import create_session
from error_handling import display_error
from posts_categorization import batch_summarize_and_classify
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = "https://api.linkedin.com/rest"
# Initialize sentiment pipeline (loaded once globally)
sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
# --- Utility Function ---
def extract_text_from_mention_commentary(commentary):
"""
Extracts clean text from a commentary string, removing potential placeholders like {mention}.
"""
import re
if not commentary:
return ""
return re.sub(r"{.*?}", "", commentary).strip()
# --- Core Sentiment Analysis Helper ---
def _get_sentiment_from_text(text_to_analyze):
"""
Analyzes a single piece of text and returns its sentiment label and raw counts.
Returns a dict: {"label": "Sentiment Label", "counts": defaultdict(int)}
"""
sentiment_counts = defaultdict(int)
dominant_sentiment_label = "Neutral π" # Default
if not text_to_analyze or not text_to_analyze.strip():
return {"label": dominant_sentiment_label, "counts": sentiment_counts}
try:
# Truncate to avoid issues with very long texts for the model
analysis_result = sentiment_pipeline(str(text_to_analyze)[:512])
label = analysis_result[0]['label'].upper()
if label in ['POSITIVE', 'VERY POSITIVE']:
dominant_sentiment_label = 'Positive π'
sentiment_counts['Positive π'] += 1
elif label in ['NEGATIVE', 'VERY NEGATIVE']:
dominant_sentiment_label = 'Negative π'
sentiment_counts['Negative π'] += 1
elif label == 'NEUTRAL':
dominant_sentiment_label = 'Neutral π' # Already default, but for clarity
sentiment_counts['Neutral π'] += 1
else:
dominant_sentiment_label = 'Unknown' # Catch any other labels from the model
sentiment_counts['Unknown'] += 1
except Exception as e:
# Log the error with more context if possible
logging.error(f"Sentiment analysis failed for text snippet '{str(text_to_analyze)[:50]}...'. Error: {e}")
sentiment_counts['Error'] += 1
dominant_sentiment_label = "Error" # Indicate error in sentiment
return {"label": dominant_sentiment_label, "counts": sentiment_counts}
def get_post_media_category(post_content):
"""
Determines the media category from the post's content object.
Args:
post_content (dict or None): The content dictionary of the post.
Returns:
str: The determined media category (e.g., "Video", "Article", "Document", "Image", "Multi-Image", "NONE").
"""
if not post_content:
return "NONE"
# 1. Check for specific LinkedIn Video Component (from your original logic)
# You might want to refine this if 'mediaCategory' within the video component is more specific
if "com.linkedin.voyager.feed.render.LinkedInVideoComponent" in post_content:
# video_component_data = post_content.get("com.linkedin.voyager.feed.render.LinkedInVideoComponent", {})
# return video_component_data.get("mediaCategory", "Video") # Example if you want to use its specific category
return "Video"
# 2. Check for Article (based on your "old code" and examples)
if 'article' in post_content:
return "Article"
# 3. Check for Multi-Image (based on your "old code")
if 'multiImage' in post_content:
return "Multi-Image"
# 4. Check for Media (Document or Image - based on your "old code" and examples)
if 'media' in post_content:
media_item = post_content['media']
# Heuristic from your "old code": if 'title' is present, it's likely a Document.
if 'title' in media_item:
# Example: "content": {"media": {"title": "...", "id": "urn:li:document:..."}}
return "Document"
# Else, if 'id' is present (and no title was found for Document), assume Image.
elif 'id' in media_item:
# Example: "content": {"media": {"altText": "", "id": "urn:li:image:..."}}
return "Image"
return "NONE"
# --- Post Retrieval Functions ---
def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count):
"""
Fetches raw posts, their basic statistics, and performs summarization/categorization.
Does NOT fetch comments or analyze sentiment of comments here.
"""
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
session = create_session(comm_client_id, token=token_dict)
session.headers.update({
"LinkedIn-Version": "202502"
})
posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED"
logging.info(f"Fetching posts from URL: {posts_url}")
try:
resp = session.get(posts_url)
resp.raise_for_status()
raw_posts_api = resp.json().get("elements", [])
logging.info(f"Fetched {len(raw_posts_api)} raw posts from API.")
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
text = getattr(e.response, 'text', 'No response text')
logging.error(f"Failed to fetch posts (Status: {status}): {e}. Response: {text}")
raise ValueError(f"Failed to fetch posts (Status: {status})") from e
except json.JSONDecodeError as e:
logging.error(f"Failed to decode JSON from posts response: {e}. Response text: {resp.text if resp else 'No response object'}")
raise ValueError("Failed to decode JSON from posts response") from e
if not raw_posts_api:
logging.info("No raw posts found.")
return [], {}, "DefaultOrgName"
post_urns_for_stats = [p["id"] for p in raw_posts_api if p.get("id")]
post_texts_for_nlp = []
for p in raw_posts_api:
text_content = p.get("commentary") or \
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
"[No text content]"
post_texts_for_nlp.append({"text": text_content, "id": p.get("id")})
logging.info(f"Prepared {len(post_texts_for_nlp)} posts for NLP (summarization/classification).")
if 'batch_summarize_and_classify' in globals():
structured_results_list = batch_summarize_and_classify(post_texts_for_nlp)
else:
logging.warning("batch_summarize_and_classify not found, using fallback.")
structured_results_list = [{"id": p["id"], "summary": "N/A", "category": "N/A"} for p in post_texts_for_nlp]
structured_results_map = {res["id"]: res for res in structured_results_list if "id" in res}
stats_map = {}
if post_urns_for_stats:
batch_size_stats = 20
for i in range(0, len(post_urns_for_stats), batch_size_stats):
batch_urns = post_urns_for_stats[i:i+batch_size_stats]
params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn}
share_idx = 0 # Index for share URNs in the current batch's params
ugc_idx = 0 # Index for ugcPost URNs in the current batch's params
# Keep track of URNs actually added to this batch's parameters for logging
urns_in_current_api_call = []
for urn_str in batch_urns:
if ":share:" in urn_str:
params[f"shares[{share_idx}]"] = urn_str
share_idx += 1
urns_in_current_api_call.append(urn_str)
elif ":ugcPost:" in urn_str:
params[f"ugcPosts[{ugc_idx}]"] = urn_str
ugc_idx += 1
urns_in_current_api_call.append(urn_str)
else:
logging.warning(f"URN {urn_str} is not a recognized share or ugcPost type for stats. Skipping.")
continue
# If no valid URNs were prepared for this batch, skip the API call
if not share_idx and not ugc_idx: # or check 'if not urns_in_current_api_call:'
logging.info(f"Skipping API call for an empty or invalid batch of URNs (original batch segment size: {len(batch_urns)}).")
continue
try:
# Log the URNs being sent in this specific API call
logging.info(f"Fetching stats for batch of {len(urns_in_current_api_call)} URNs. First URN in call: {urns_in_current_api_call[0] if urns_in_current_api_call else 'N/A'}")
# Actual API call
stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params)
stat_resp.raise_for_status() # Raises an HTTPError for bad responses (4XX or 5XX)
stats_data = stat_resp.json()
# --- Corrected Parsing Logic ---
# LinkedIn API for batch stats often returns an "elements" list.
elements_from_api = stats_data.get("elements")
if isinstance(elements_from_api, list):
if not elements_from_api:
logging.info(f"API returned 'elements' but it's an empty list for the URNs in this call.")
processed_urns_in_batch = 0
for item in elements_from_api:
urn_in_item = None
# Determine the URN key (e.g., 'share' or 'ugcPost')
if "share" in item:
urn_in_item = item.get("share")
elif "ugcPost" in item:
urn_in_item = item.get("ugcPost")
# Add other URN types if necessary, e.g., elif "article" in item: ...
if urn_in_item:
stats_values = item.get("totalShareStatistics", {})
if stats_values: # Only add if there are actual stats
stats_map[urn_in_item] = stats_values
processed_urns_in_batch +=1
else:
# It's possible an URN is returned without stats, or with empty stats
logging.debug(f"No 'totalShareStatistics' data found for URN: {urn_in_item} in API item: {item}")
stats_map[urn_in_item] = {} # Store empty stats if URN was processed but had no data
else:
logging.warning(f"Could not extract a recognized URN key from API element: {item}")
logging.info(f"Successfully processed {processed_urns_in_batch} URNs with stats from the API response for this batch. Current total stats_map size: {len(stats_map)}")
elif elements_from_api is None and "results" in stats_data:
# Fallback or alternative check if your API version *does* use "results"
# This was your original attempt. If "elements" is consistently missing,
# you might need to debug the exact structure of "results".
logging.warning(f"API response does not contain 'elements' key, but 'results' key is present. Attempting to parse 'results'. Response keys: {stats_data.keys()}")
results_dict = stats_data.get("results", {})
if isinstance(results_dict, dict):
for urn_key, stat_element_values in results_dict.items():
stats_map[urn_key] = stat_element_values.get("totalShareStatistics", {})
logging.info(f"Processed stats from 'results' dictionary. Current stats_map size: {len(stats_map)}")
else:
logging.error(f"'results' key found but is not a dictionary. Type: {type(results_dict)}")
else:
# Neither "elements" (as list) nor "results" (as dict) found as expected
logging.error(f"API response structure not recognized. Expected 'elements' (list) or 'results' (dict). Got keys: {stats_data.keys()}. Full response sample: {str(stats_data)[:500]}")
# --- End Corrected Parsing Logic ---
# Check for specific errors reported by the API within the JSON response
if stats_data.get("errors"):
for urn_errored, error_detail in stats_data.get("errors", {}).items():
logging.warning(f"API reported error for URN {urn_errored}: {error_detail.get('message', 'Unknown API error message')}")
# This log might be slightly misleading if parsing failed but no exception occurred.
# The more specific log after parsing 'elements' is better.
# logging.info(f"Successfully processed stats response for {len(urns_in_current_api_call)} URNs. Current stats_map size: {len(stats_map)}")
except requests.exceptions.HTTPError as e:
# Specific handling for HTTP errors (4xx, 5xx)
status_code = e.response.status_code
response_text = e.response.text
logging.warning(f"HTTP error fetching stats for a batch (Status: {status_code}): {e}. Params: {params}. Response: {response_text[:500]}") # Log first 500 chars of response
except requests.exceptions.RequestException as e:
# Catch other requests-related errors (e.g., connection issues)
status_code = getattr(e.response, 'status_code', 'N/A')
response_text = getattr(e.response, 'text', 'No response text')
logging.warning(f"Request failed for stats batch (Status: {status_code}): {e}. Params: {params}. Response: {response_text[:500]}")
except json.JSONDecodeError as e:
# Handle cases where the response is not valid JSON
response_text_for_json_error = stat_resp.text if 'stat_resp' in locals() and hasattr(stat_resp, 'text') else 'Response object not available or no text attribute'
logging.warning(f"Failed to decode JSON from stats response: {e}. Response text: {response_text_for_json_error[:500]}") # Log first 500 chars
except Exception as e:
# Catch any other unexpected errors during the batch processing
logging.error(f"An unexpected error occurred processing stats batch: {e}", exc_info=True)
logging.info(f"Finished processing all URN batches. Final stats_map size: {len(stats_map)}")
processed_raw_posts = []
for p in raw_posts_api:
post_id = p.get("id")
if not post_id:
logging.warning("Skipping raw post due to missing ID.")
continue
text_content = p.get("commentary") or \
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
"[No text content]"
timestamp = p.get("publishedAt") or p.get("createdAt") or p.get("firstPublishedAt")
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
structured_res = structured_results_map.get(post_id, {"summary": "N/A", "category": "N/A"})
processed_raw_posts.append({
"id": post_id,
"raw_text": text_content,
"summary": structured_res["summary"],
"category": structured_res["category"],
"published_at_timestamp": timestamp,
"published_at_iso": published_at_iso,
"organization_urn": p.get("author", f"urn:li:organization:{org_urn.split(':')[-1]}"),
"is_ad": 'adContext' in p,
"media_category": get_post_media_category(p.get("content")),
})
logging.info(f"Processed {len(processed_raw_posts)} posts with core data.")
return processed_raw_posts, stats_map, "DefaultOrgName"
def fetch_comments(comm_client_id, community_token, post_urns, stats_map):
"""
Fetches comments for a list of post URNs using the socialActions endpoint.
Uses stats_map to potentially skip posts with 0 comments.
"""
# Ensure community_token is in the expected dictionary format for create_session
if isinstance(community_token, str):
token_dict = {'access_token': community_token, 'token_type': 'Bearer'}
elif isinstance(community_token, dict) and 'access_token' in community_token:
token_dict = community_token
else:
logging.error("Invalid community_token format. Expected a string or a dict with 'access_token'.")
return {urn: [] for urn in post_urns} # Return empty for all if token is bad
linkedin_session = create_session(comm_client_id, token=token_dict)
# Set the LinkedIn API version header
# This is crucial for API compatibility.
linkedin_session.headers.update({
'LinkedIn-Version': "202502" # Or your target version
})
all_comments_by_post = {}
logging.info(f"Fetching comments for {len(post_urns)} posts.")
for post_urn in post_urns:
post_stats = stats_map.get(post_urn, {})
# Try to get comment count from "commentSummary" first, then fallback to "commentCount"
comment_summary = post_stats.get("commentSummary", {})
comment_count_from_stats = comment_summary.get("totalComments", post_stats.get('commentCount', 0))
if comment_count_from_stats == 0:
logging.info(f"Skipping comment fetch for {post_urn} as commentCount is 0 in stats_map.")
all_comments_by_post[post_urn] = []
continue
try:
# IMPORTANT: Use the correct endpoint structure from your working code.
# The post_urn goes directly into the path and should NOT be URL-encoded here.
url = f"{API_REST_BASE}/socialActions/{post_urn}/comments"
# If you want to add other parameters like 'count' or 'start', append them, e.g.,
# url = f"{API_REST_BASE}/socialActions/{post_urn}/comments?sortOrder=CHRONOLOGICAL&count=10"
logging.debug(f"Fetching comments from URL: {url} for post URN: {post_urn}")
response = linkedin_session.get(url)
if response.status_code == 200:
elements = response.json().get('elements', [])
comments_texts = []
for c in elements:
# Extracting comment text. Adjust if the structure is different.
# The original working code stored `data.get('elements', [])`
# If you need the full comment object, store 'c' instead of 'comment_text'.
message_obj = c.get('message', {})
if isinstance(message_obj, dict): # Ensure message is a dict before .get('text')
comment_text = message_obj.get('text')
if comment_text:
comments_texts.append(comment_text)
elif isinstance(message_obj, str): # Sometimes message might be just a string
comments_texts.append(message_obj)
all_comments_by_post[post_urn] = comments_texts
logging.info(f"Fetched {len(comments_texts)} comments for {post_urn}.")
elif response.status_code == 403:
logging.warning(f"Forbidden (403) to fetch comments for {post_urn}. URL: {url}. Response: {response.text}. Check permissions or API version.")
all_comments_by_post[post_urn] = [] # Or some error indicator
elif response.status_code == 404:
logging.warning(f"Comments not found (404) for {post_urn}. URL: {url}. Response: {response.text}")
all_comments_by_post[post_urn] = []
else:
logging.error(f"Error fetching comments for {post_urn}. Status: {response.status_code}. URL: {url}. Response: {response.text}")
all_comments_by_post[post_urn] = [] # Or some error indicator
except requests.exceptions.RequestException as e:
logging.error(f"RequestException fetching comments for {post_urn}: {e}")
all_comments_by_post[post_urn] = []
except json.JSONDecodeError as e:
# Log the response text if it's available and JSON decoding fails
response_text_for_log = 'N/A'
if 'response' in locals() and hasattr(response, 'text'):
response_text_for_log = response.text
logging.error(f"JSONDecodeError fetching comments for {post_urn}. Response: {response_text_for_log}. Error: {e}")
all_comments_by_post[post_urn] = []
except Exception as e:
# Catch any other unexpected errors
logging.error(f"Unexpected error fetching comments for {post_urn}: {e}", exc_info=True) # exc_info=True for traceback
all_comments_by_post[post_urn] = []
return all_comments_by_post
def analyze_sentiment(all_comments_data):
"""
Analyzes sentiment for comments grouped by post_urn using the helper function.
all_comments_data is a dict: {post_urn: [comment_text_1, comment_text_2,...]}
Returns a dict: {post_urn: {"sentiment": "DominantOverallSentiment", "percentage": X.X, "details": {aggregated_counts}}}
"""
results_by_post = {}
logging.info(f"Analyzing aggregated sentiment for comments from {len(all_comments_data)} posts.")
for post_urn, comments_list in all_comments_data.items():
aggregated_sentiment_counts = defaultdict(int)
total_valid_comments_for_post = 0
if not comments_list:
results_by_post[post_urn] = {"sentiment": "Neutral π", "percentage": 0.0, "details": dict(aggregated_sentiment_counts)}
continue
for comment_text in comments_list:
if not comment_text or not comment_text.strip():
continue
# Use the helper for individual comment sentiment
single_comment_sentiment = _get_sentiment_from_text(comment_text)
# Aggregate counts
for label, count in single_comment_sentiment["counts"].items():
aggregated_sentiment_counts[label] += count
if single_comment_sentiment["label"] != "Error": # Count valid analyses
total_valid_comments_for_post +=1
dominant_overall_sentiment = "Neutral π" # Default
percentage = 0.0
if total_valid_comments_for_post > 0:
# Determine dominant sentiment from aggregated_sentiment_counts
# Exclude 'Error' from being a dominant sentiment unless it's the only category with counts
valid_sentiments = {k: v for k, v in aggregated_sentiment_counts.items() if k != 'Error' and v > 0}
if not valid_sentiments:
dominant_overall_sentiment = 'Error' if aggregated_sentiment_counts['Error'] > 0 else 'Neutral π'
else:
# Simple max count logic for dominance
dominant_overall_sentiment = max(valid_sentiments, key=valid_sentiments.get)
if dominant_overall_sentiment != 'Error':
percentage = round((aggregated_sentiment_counts[dominant_overall_sentiment] / total_valid_comments_for_post) * 100, 1)
else: # if dominant is 'Error' or only errors were found
percentage = 0.0
elif aggregated_sentiment_counts['Error'] > 0 : # No valid comments, but errors occurred
dominant_overall_sentiment = 'Error'
results_by_post[post_urn] = {
"sentiment": dominant_overall_sentiment,
"percentage": percentage,
"details": dict(aggregated_sentiment_counts) # Store aggregated counts
}
logging.debug(f"Aggregated sentiment for post {post_urn}: {results_by_post[post_urn]}")
return results_by_post
def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post):
"""
Combines processed raw post data with their statistics and overall comment sentiment.
"""
detailed_post_list = []
logging.info(f"Compiling detailed data for {len(processed_raw_posts)} posts.")
for proc_post in processed_raw_posts:
post_id = proc_post["id"]
stats = stats_map.get(post_id, {})
likes = stats.get("likeCount", 0)
comments_stat_count = stats.get("commentSummary", {}).get("totalComments", stats.get("commentCount", 0))
clicks = stats.get("clickCount", 0)
shares = stats.get("shareCount", 0)
impressions = stats.get("impressionCount", 0)
unique_impressions = stats.get("uniqueImpressionsCount", stats.get("impressionCount", 0))
engagement_numerator = likes + comments_stat_count + clicks + shares
engagement_rate = (engagement_numerator / impressions * 100) if impressions and impressions > 0 else 0.0
sentiment_info = sentiments_per_post.get(post_id, {"sentiment": "Neutral π", "percentage": 0.0, "details": {}})
display_text = html.escape(proc_post["raw_text"][:250]).replace("\n", "<br>") + \
("..." if len(proc_post["raw_text"]) > 250 else "")
when_formatted = datetime.fromtimestamp(proc_post["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M") \
if proc_post["published_at_timestamp"] else "Unknown"
detailed_post_list.append({
"id": post_id,
"when": when_formatted,
"text_for_display": display_text,
"raw_text": proc_post["raw_text"],
"likes": likes,
"comments_stat_count": comments_stat_count,
"clicks": clicks,
"shares": shares,
"impressions": impressions,
"uniqueImpressionsCount": unique_impressions,
"engagement": f"{engagement_rate:.2f}%",
"engagement_raw": engagement_rate,
"sentiment": sentiment_info["sentiment"],
"sentiment_percent": sentiment_info["percentage"],
"sentiment_details": sentiment_info.get("details", {}),
"summary": proc_post["summary"],
"category": proc_post["category"],
"organization_urn": proc_post["organization_urn"],
"is_ad": proc_post["is_ad"],
"media_category": proc_post.get("media_category", "NONE"),
"published_at": proc_post["published_at_iso"]
})
logging.info(f"Compiled {len(detailed_post_list)} detailed posts.")
return detailed_post_list
def prepare_data_for_bubble(detailed_posts, all_actual_comments_data):
"""
Prepares data lists for uploading to Bubble.
- detailed_posts: List of comprehensively compiled post objects.
- all_actual_comments_data: Dict of {post_urn: [comment_texts]} from fetch_comments.
"""
li_posts = []
li_post_stats = []
li_post_comments = []
logging.info("Preparing posts data for Bubble.")
if not detailed_posts:
logging.warning("No detailed posts to prepare for Bubble.")
return [], [], []
org_urn_default = detailed_posts[0]["organization_urn"] if detailed_posts else "urn:li:organization:UNKNOWN"
for post_data in detailed_posts:
li_posts.append({
"organization_urn": post_data["organization_urn"],
"id": post_data["id"],
"is_ad": post_data["is_ad"],
"media_type": post_data.get("media_category", "NONE"),
"published_at": post_data["published_at"],
"sentiment": post_data["sentiment"],
"text": post_data["raw_text"],
#"summary_text": post_data["summary"],
"li_eb_label": post_data["category"]
})
li_post_stats.append({
"clickCount": post_data["clicks"],
"commentCount": post_data["comments_stat_count"],
"engagement": post_data["engagement_raw"],
"impressionCount": post_data["impressions"],
"likeCount": post_data["likes"],
"shareCount": post_data["shares"],
"uniqueImpressionsCount": post_data["uniqueImpressionsCount"],
"post_id": post_data["id"],
"organization_urn": post_data["organization_urn"]
})
for post_urn, comments_text_list in all_actual_comments_data.items():
current_post_org_urn = org_urn_default
for p in detailed_posts:
if p["id"] == post_urn:
current_post_org_urn = p["organization_urn"]
break
for single_comment_text in comments_text_list:
if single_comment_text and single_comment_text.strip():
li_post_comments.append({
"comment_text": single_comment_text,
"post_id": post_urn,
"organization_urn": current_post_org_urn
})
logging.info(f"Prepared {len(li_posts)} posts, {len(li_post_stats)} stats entries, and {len(li_post_comments)} comments for Bubble.")
return li_posts, li_post_stats, li_post_comments
# --- Mentions Retrieval Functions ---
def fetch_linkedin_mentions_core(comm_client_id, community_token, org_urn, count=20):
"""
Fetches raw mention notifications and the details of the posts where the organization was mentioned.
Returns a list of processed mention data (internal structure).
"""
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
session = create_session(comm_client_id, token=token_dict)
session.headers.update({
"X-Restli-Protocol-Version": "2.0.0",
"LinkedIn-Version": "202502"
})
encoded_org_urn = quote(org_urn, safe='')
notifications_url_base = (
f"{API_REST_BASE}/organizationalEntityNotifications"
f"?q=criteria"
f"&actions=List(SHARE_MENTION)"
f"&organizationalEntity={encoded_org_urn}"
f"&count={count}"
)
all_notifications = []
start_index = 0
processed_mentions_internal = []
page_count = 0
max_pages = 10
while page_count < max_pages:
current_url = f"{notifications_url_base}&start={start_index}"
logging.info(f"Fetching notifications page {page_count + 1} from URL: {current_url}")
try:
resp = session.get(current_url)
resp.raise_for_status()
data = resp.json()
elements = data.get("elements", [])
if not elements:
logging.info(f"No more notifications found on page {page_count + 1}. Total notifications fetched: {len(all_notifications)}.")
break
all_notifications.extend(elements)
paging = data.get("paging", {})
if 'start' not in paging or 'count' not in paging or len(elements) < paging.get('count', count):
logging.info(f"Last page of notifications fetched. Total notifications: {len(all_notifications)}.")
break
start_index = paging['start'] + paging['count']
page_count += 1
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
text = getattr(e.response, 'text', 'No response text')
logging.error(f"Failed to fetch notifications (Status: {status}): {e}. Response: {text}")
break
except json.JSONDecodeError as e:
logging.error(f"Failed to decode JSON from notifications response: {e}. Response: {resp.text if resp else 'No resp obj'}")
break
if page_count >= max_pages:
logging.info(f"Reached max_pages ({max_pages}) for fetching notifications.")
break
if not all_notifications:
logging.info("No mention notifications found after fetching.")
return []
mention_share_urns = list(set([
n.get("generatedActivity") for n in all_notifications
if n.get("action") == "SHARE_MENTION" and n.get("generatedActivity")
]))
logging.info(f"Found {len(mention_share_urns)} unique share URNs from SHARE_MENTION notifications.")
# for share_urn in mention_share_urns:
# encoded_share_urn = quote(share_urn, safe='')
# post_detail_url = f"{API_REST_BASE}/posts/{encoded_share_urn}"
# logging.info(f"Fetching details for mentioned post: {post_detail_url}")
# try:
# post_resp = session.get(post_detail_url)
# post_resp.raise_for_status()
# post_data = post_resp.json()
# commentary_raw = post_data.get("commentary")
# if not commentary_raw and "specificContent" in post_data:
# share_content = post_data.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {})
# commentary_raw = share_content.get("shareCommentaryV2", {}).get("text", "")
# if not commentary_raw:
# logging.warning(f"No commentary found for share URN {share_urn}. Skipping.")
# continue
# mention_text_cleaned = extract_text_from_mention_commentary(commentary_raw)
# timestamp = post_data.get("publishedAt") or post_data.get("createdAt") or post_data.get("firstPublishedAt")
# published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
# author_urn = post_data.get("author", "urn:li:unknown")
# processed_mentions_internal.append({
# "mention_id": f"mention_{share_urn}",
# "share_urn": share_urn,
# "mention_text_raw": commentary_raw,
# "mention_text_cleaned": mention_text_cleaned,
# "published_at_timestamp": timestamp,
# "published_at_iso": published_at_iso,
# "mentioned_by_author_urn": author_urn,
# "organization_urn_mentioned": org_urn
# })
# except requests.exceptions.RequestException as e:
# status = getattr(e.response, 'status_code', 'N/A')
# text = getattr(e.response, 'text', 'No response text')
# logging.warning(f"Failed to fetch post details for share URN {share_urn} (Status: {status}): {e}. Response: {text}")
# except json.JSONDecodeError as e:
# logging.warning(f"Failed to decode JSON for post details {share_urn}: {e}. Response: {post_resp.text if post_resp else 'No resp obj'}")
if mention_share_urns:
# Encode URNs for the batch request URL
encoded_urns = [quote(urn, safe='') for urn in mention_share_urns]
formatted_urns = ",".join(encoded_urns)
# Construct the URL for batch fetching post details
# API_REST_BASE should be the base URL like "https://api.linkedin.com/rest"
batch_posts_url = f"{API_REST_BASE}/posts?ids=List({formatted_urns})"
logging.info(f"Fetching details for {len(mention_share_urns)} posts in a batch: {batch_posts_url}")
try:
batch_resp = session.get(batch_posts_url)
batch_resp.raise_for_status() # Raise an exception for HTTP errors
batch_data = batch_resp.json()
results = batch_data.get("results", {}) # Contains post details keyed by URN
errors = batch_data.get("errors", {}) # Contains errors for specific URNs
statuses = batch_data.get("statuses", {}) # Contains HTTP statuses for specific URNs
# Process each share URN using the data from the batch response
for share_urn in mention_share_urns:
if share_urn not in results:
# Log if a URN was requested but not found in the results
logging.warning(
f"Post details for share URN {share_urn} not found in batch response. "
f"Status: {statuses.get(share_urn)}, Error: {errors.get(share_urn)}"
)
continue
post_data = results[share_urn]
# Extract commentary - try direct 'commentary' field first, then fallback
commentary_raw = post_data.get("commentary")
if not commentary_raw and "specificContent" in post_data:
# Fallback for older structures or specific share types if 'commentary' is not top-level
share_content = post_data.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {})
commentary_raw = share_content.get("shareCommentaryV2", {}).get("text", "")
if not commentary_raw:
logging.warning(f"No commentary found for share URN {share_urn} in batch data. Skipping.")
continue
# Clean the commentary text (assuming this function is defined)
mention_text_cleaned = extract_text_from_mention_commentary(commentary_raw)
# Extract timestamp and convert to ISO format
timestamp = post_data.get("publishedAt") or post_data.get("createdAt") or post_data.get("firstPublishedAt")
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
# Extract author URN
author_urn = post_data.get("author", "urn:li:unknown") # Default if author is not found
# Append processed mention data
processed_mentions_internal.append({
"mention_id": f"mention_{share_urn}", # Create a unique ID for the mention
"share_urn": share_urn,
"mention_text_raw": commentary_raw,
"mention_text_cleaned": mention_text_cleaned,
"published_at_timestamp": timestamp,
"published_at_iso": published_at_iso,
"mentioned_by_author_urn": author_urn,
"organization_urn_mentioned": org_urn # The URN of the organization that was mentioned
})
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
text = getattr(e.response, 'text', 'No response text')
logging.error(f"Failed to fetch batch post details (Status: {status}): {e}. Response: {text}")
except json.JSONDecodeError as e:
# Log error if JSON decoding fails for the batch response
logging.error(f"Failed to decode JSON from batch posts response: {e}. Response: {batch_resp.text if batch_resp else 'No resp obj'}")
logging.info(f"Processed {len(processed_mentions_internal)} mentions with their post details.")
return processed_mentions_internal
def analyze_mentions_sentiment(processed_mentions_list):
"""
Analyzes sentiment for the text of each processed mention using the helper function.
Input: list of processed_mention dicts (internal structure from fetch_linkedin_mentions_core).
Returns: a dict {mention_id: {"sentiment_label": "DominantSentiment", "percentage": 100.0, "details": {counts}}}
"""
mention_sentiments_map = {}
logging.info(f"Analyzing individual sentiment for {len(processed_mentions_list)} mentions.")
for mention_data in processed_mentions_list:
mention_internal_id = mention_data["mention_id"] # Internal ID from fetch_linkedin_mentions_core
text_to_analyze = mention_data.get("mention_text_cleaned", "")
sentiment_result = _get_sentiment_from_text(text_to_analyze)
# For single text, percentage is 100% for the dominant label if not error
percentage = 0.0
if sentiment_result["label"] != "Error" and any(sentiment_result["counts"].values()):
percentage = 100.0
mention_sentiments_map[mention_internal_id] = {
"sentiment_label": sentiment_result["label"], # The dominant sentiment label
"percentage": percentage,
"details": dict(sentiment_result["counts"]) # Raw counts for this specific mention
}
logging.debug(f"Individual sentiment for mention {mention_internal_id}: {mention_sentiments_map[mention_internal_id]}")
return mention_sentiments_map
def compile_detailed_mentions(processed_mentions_list, mention_sentiments_map):
"""
Combines processed mention data (internal structure) with their sentiment analysis
into the user-specified output format.
processed_mentions_list: list of dicts from fetch_linkedin_mentions_core
mention_sentiments_map: dict from analyze_mentions_sentiment, keyed by "mention_id" (internal)
and contains "sentiment_label".
"""
detailed_mentions_output = []
logging.info(f"Compiling detailed data for {len(processed_mentions_list)} mentions into specified format.")
for mention_core_data in processed_mentions_list:
mention_internal_id = mention_core_data["mention_id"]
sentiment_info = mention_sentiments_map.get(mention_internal_id, {"sentiment_label": "Neutral π"})
date_formatted = "Unknown"
if mention_core_data["published_at_timestamp"]:
try:
date_formatted = datetime.fromtimestamp(mention_core_data["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M")
except TypeError:
logging.warning(f"Could not format timestamp for mention_id {mention_internal_id}")
detailed_mentions_output.append({
"date": date_formatted, # User-specified field name
"id": mention_core_data["share_urn"], # User-specified field name (URN of the post with mention)
"mention_text": mention_core_data["mention_text_cleaned"], # User-specified field name
"organization_urn": mention_core_data["organization_urn_mentioned"], # User-specified field name
"sentiment_label": sentiment_info["sentiment_label"] # User-specified field name
})
logging.info(f"Compiled {len(detailed_mentions_output)} detailed mentions with specified fields.")
return detailed_mentions_output
def prepare_mentions_for_bubble(compiled_detailed_mentions_list):
"""
Prepares mention data for uploading to a Bubble table.
The input `compiled_detailed_mentions_list` is already in the user-specified format:
[{"date": ..., "id": ..., "mention_text": ..., "organization_urn": ..., "sentiment_label": ...}, ...]
This function directly uses these fields as per user's selection for Bubble upload.
"""
li_mentions_bubble = []
logging.info(f"Preparing {len(compiled_detailed_mentions_list)} compiled mentions for Bubble upload.")
if not compiled_detailed_mentions_list:
return []
for mention_data in compiled_detailed_mentions_list:
# The mention_data dictionary already has the keys:
# "date", "id", "mention_text", "organization_urn", "sentiment_label"
# These are used directly for the Bubble upload list.
li_mentions_bubble.append({
"date": mention_data["date"],
"id": mention_data["id"],
"mention_text": mention_data["mention_text"],
"organization_urn": mention_data["organization_urn"],
"sentiment_label": mention_data["sentiment_label"]
# If Bubble table has different field names, mapping would be done here.
# Example: "bubble_mention_date": mention_data["date"],
# For now, using direct mapping as per user's selected code for the append.
})
logging.info(f"Prepared {len(li_mentions_bubble)} mention entries for Bubble, using direct field names from compiled data.")
return li_mentions_bubble
|