Spaces:
Running
Running
File size: 7,590 Bytes
de15097 24f43be d2de44b 24f43be d2de44b fd8976c c231c9f 24f43be 09bc280 a8afa39 09bc280 d2de44b c231c9f 09bc280 a8afa39 24f43be d2de44b c231c9f 24f43be d2de44b de15097 09bc280 de15097 09bc280 c231c9f 09bc280 a8afa39 09bc280 de15097 09bc280 a8afa39 24f43be de15097 d2de44b c231c9f d2de44b 24f43be d2de44b de15097 a8afa39 24f43be c231c9f 09bc280 24f43be a8afa39 24f43be a8afa39 24f43be a8afa39 fd8976c 09bc280 24f43be 09bc280 a8afa39 09bc280 a8afa39 09bc280 24f43be 09bc280 a8afa39 09bc280 24f43be a8afa39 09bc280 24f43be 09bc280 c231c9f d2de44b 24f43be a8afa39 09bc280 a8afa39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# chatbot_handler.py
import logging
import json
from google import genai
from google.genai import types as genai_types # Import types for GenerateContentConfig
import os
import asyncio
# Gemini API key configuration
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', '')
client = None
model_name = "gemini-2.0-flash" # As per user's documentation snippet, ensure this model is available with their API key type
# This will be used to create genai_types.GenerateContentConfig
generation_config_params = {
"temperature": 0.7,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 2048,
# If you need a system instruction, add it here, e.g.:
# "system_instruction": "You are a helpful AI assistant providing insights on LinkedIn analytics."
}
try:
if GEMINI_API_KEY:
# Initialize client using genai.Client
client = genai.Client(api_key=GEMINI_API_KEY)
logging.info(f"Gemini client (genai.Client) initialized. Target model for generation: '{model_name}'")
else:
logging.error("Gemini API Key is not set.")
except Exception as e:
logging.error(f"Failed to initialize Gemini client (genai.Client): {e}", exc_info=True)
def format_history_for_gemini(gradio_chat_history: list) -> list:
"""Converts Gradio chat history to Gemini content format."""
gemini_contents = []
for msg in gradio_chat_history:
role = "user" if msg.get("role") == "user" else "model"
content = msg.get("content")
if isinstance(content, str):
gemini_contents.append({"role": role, "parts": [{"text": content}]})
elif isinstance(content, list) and len(content) > 0 and isinstance(content[0], dict) and "type" in content[0]:
parts = []
for part_item in content:
if part_item.get("type") == "text":
parts.append({"text": part_item.get("text", "")})
if parts:
gemini_contents.append({"role": role, "parts": parts})
else:
logging.warning(f"Skipping complex but empty content part in chat history: {content}")
else:
logging.warning(f"Skipping non-string/non-standard content in chat history: {content}")
# For `client.models.generate_content`, the `contents` parameter
# expects a list of `Content` objects (or dicts that can be cast to them).
# Each `Content` object has 'role' and 'parts'.
return gemini_contents
async def generate_llm_response(user_message: str, plot_id: str, plot_label: str, chat_history_for_plot: list, plot_data_summary: str = None):
if not client:
logging.error("Gemini client (genai.Client) not initialized.")
return "The AI model is not available. Configuration error."
gemini_formatted_history = format_history_for_gemini(chat_history_for_plot)
if not gemini_formatted_history:
logging.error("Formatted history for Gemini is empty.")
return "There was an issue processing the conversation history (empty)."
if not any(part.get("text","").strip() for message in gemini_formatted_history for part in message.get("parts",[])):
logging.error("Formatted history for Gemini contains no text parts.")
return "There was an issue processing the conversation history for the AI model (empty text)."
try:
response = None
if hasattr(client, 'models') and hasattr(client.models, 'generate_content'):
logging.debug(f"Using genai.Client.models.generate_content for model '{model_name}' (synchronous via asyncio.to_thread)")
# Create the GenerateContentConfig object from our parameters
# This can include system_instruction if added to generation_config_params
gen_config_obj = genai_types.GenerateContentConfig(**generation_config_params)
# Call client.models.generate_content
# 1. Use model_name directly (e.g., "gemini-1.5-flash-latest")
# 2. Use 'config' instead of 'generation_config' for the keyword argument
response = await asyncio.to_thread(
client.models.generate_content,
model=model_name, # Use model_name directly
contents=gemini_formatted_history,
config=gen_config_obj # Corrected keyword argument
)
else:
logging.error(f"Gemini client (genai.Client) does not have 'models.generate_content' method. Type: {type(client)}")
return "AI model interaction error (SDK method not found)."
# Process response
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and response.prompt_feedback.block_reason:
reason = response.prompt_feedback.block_reason
reason_name = getattr(reason, 'name', str(reason))
logging.warning(f"Blocked by prompt feedback: {reason_name}")
return f"Blocked due to content policy: {reason_name}."
if hasattr(response, 'text') and response.text:
logging.debug("Response has a direct .text attribute.")
return response.text
logging.debug("Response does not have a direct .text attribute or it's empty, checking candidates.")
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
return "".join(part.text for part in response.candidates[0].content.parts if hasattr(part, 'text'))
finish_reason = "UNKNOWN"
if response.candidates and response.candidates[0].finish_reason:
finish_reason_val = response.candidates[0].finish_reason
finish_reason = getattr(finish_reason_val, 'name', str(finish_reason_val))
if not (hasattr(response, 'text') and response.text) and \
not (response.candidates and response.candidates[0].content and response.candidates[0].content.parts):
logging.warning(f"No content parts in response and no direct .text. Finish reason: {finish_reason}")
if finish_reason == "SAFETY":
return f"Response generation stopped due to safety reasons. Finish reason: {finish_reason}."
return f"The AI model returned an empty response. Finish reason: {finish_reason}."
return f"Unexpected response structure from AI model (checked .text and .candidates). Finish reason: {finish_reason}."
except AttributeError as ae:
logging.error(f"AttributeError during Gemini call for plot '{plot_label}': {ae}", exc_info=True)
return f"AI model error (Attribute): {type(ae).__name__} - {ae}."
except Exception as e:
logging.error(f"Error generating response for plot '{plot_label}': {e}", exc_info=True)
if "API_KEY_INVALID" in str(e) or "API key not valid" in str(e):
return "AI model error: API key is not valid. Please check configuration."
if "400" in str(e) and "model" in str(e).lower() and "not found" in str(e).lower():
return f"AI model error: Model '{model_name}' not found or not accessible with your API key."
# Check for the specific TypeError related to generate_content arguments
if isinstance(e, TypeError) and "got an unexpected keyword argument" in str(e):
logging.error(f"TypeError in generate_content call: {e}. This might indicate an issue with SDK version or method signature.")
return f"AI model error (Internal SDK call issue): {e}"
return f"An unexpected error occurred while contacting the AI model: {type(e).__name__}."
|