File size: 13,707 Bytes
b560569
575b933
b0464a9
87a87e7
21988b0
791c130
8add36b
f7fc39b
575b933
826a2a1
2e2e19a
8add36b
575b933
21988b0
 
 
 
 
2e2e19a
21988b0
 
8add36b
21988b0
b8db252
21988b0
8add36b
21988b0
 
2601f1c
21988b0
 
 
5a483f8
21988b0
8add36b
ddc6277
21988b0
ddc6277
 
 
 
 
 
 
 
8add36b
21988b0
 
8add36b
ddc6277
21988b0
6b39ad4
ddc6277
6b39ad4
5cc5759
 
ddc6277
 
 
 
 
1fa587a
21988b0
 
7aa6c73
2a3b22e
3b4dccb
2a3b22e
2e2e19a
1644cc1
77179e2
 
1644cc1
77179e2
2e2e19a
77179e2
8add36b
adb3bbe
11aff8b
21988b0
67742c4
a342a6b
6a8e128
21988b0
 
 
6a8e128
 
2601f1c
67742c4
6277fe0
21988b0
8add36b
 
21988b0
adb3bbe
21988b0
6b39ad4
 
 
 
 
 
 
7aa6c73
21988b0
a342a6b
21988b0
 
 
6277fe0
a342a6b
575b933
21988b0
11aff8b
 
 
 
21988b0
b8db252
8add36b
21988b0
8add36b
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc5759
aaf319d
 
 
 
 
5cc5759
aaf319d
5cc5759
 
 
aaf319d
5cc5759
 
 
aaf319d
 
5cc5759
 
 
aaf319d
8add36b
791c130
11aff8b
 
b8db252
 
11aff8b
 
d165928
11aff8b
 
b8db252
11aff8b
6277fe0
11aff8b
1644cc1
8add36b
21988b0
 
6b39ad4
5cc5759
6b39ad4
5cc5759
8add36b
6b39ad4
1644cc1
8add36b
21988b0
6b39ad4
8add36b
6b39ad4
8add36b
 
21988b0
8add36b
 
6b39ad4
 
 
 
 
 
 
 
 
 
8add36b
6b39ad4
 
 
 
8add36b
6b39ad4
 
 
 
 
21988b0
6b39ad4
 
8add36b
 
 
 
 
 
21988b0
8add36b
5cc5759
 
 
aaf319d
 
 
5cc5759
 
 
21988b0
6b39ad4
 
aaf319d
2e2e19a
8add36b
 
21988b0
1644cc1
b8db252
8add36b
1644cc1
2e2e19a
1644cc1
8add36b
6b39ad4
 
8add36b
 
 
ddc6277
aaf319d
ddc6277
8add36b
1644cc1
266ae82
adb3bbe
8add36b
21988b0
a6bc02b
21988b0
8add36b
6b39ad4
21988b0
6b39ad4
1fa587a
8add36b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
import pandas as pd
import os
import logging
from collections import defaultdict
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib

# --- Module Imports ---
from utils.gradio_utils import get_url_user_token

# Functions from newly created/refactored modules
from config import (
    PLOT_ID_TO_FORMULA_KEY_MAP,
    LINKEDIN_CLIENT_ID_ENV_VAR,
    BUBBLE_APP_NAME_ENV_VAR,
    BUBBLE_API_KEY_PRIVATE_ENV_VAR,
    BUBBLE_API_ENDPOINT_ENV_VAR
)
# UPDATED: Using the new data loading function from the refactored state manager
from services.state_manager import load_data_from_bubble
from ui.ui_generators import (
    build_analytics_tab_plot_area,
    build_home_tab_ui, # NEW: Import the function to build the Home tab UI
    BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS

# --- CHATBOT MODULE IMPORTS ---
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions
from features.chatbot.chatbot_handler import generate_llm_response

# --- AGENTIC PIPELINE (DISPLAY ONLY) IMPORTS ---
try:
    # This is the main function called on initial load to populate the agentic tabs
    from run_agentic_pipeline import load_and_display_agentic_results
    # This function is now called when a new report is selected from the dropdown
    from services.report_data_handler import fetch_and_reconstruct_data_from_bubble
    # UI formatting functions
    from ui.insights_ui_generator import (
        format_report_for_display,
        extract_key_results_for_selection,
        format_single_okr_for_display
    )
    AGENTIC_MODULES_LOADED = True
except ImportError as e:
    logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.")
    AGENTIC_MODULES_LOADED = False
    # Placeholder functions to prevent app from crashing if imports fail
    def load_and_display_agentic_results(*args, **kwargs):
        return "Modules not loaded.", gr.update(), "Modules not loaded.", "Modules not loaded.", None, [], [], "Error", {}
    def fetch_and_reconstruct_data_from_bubble(*args, **kwargs):
        return None, {}
    def format_report_for_display(report_data):
        return "Agentic modules not loaded. Report display unavailable."
    def extract_key_results_for_selection(okr_data):
        return []
    def format_single_okr_for_display(okr_data, **kwargs):
        return "Agentic modules not loaded. OKR display unavailable."


# --- ANALYTICS TAB MODULE IMPORT ---
from services.analytics_tab_module import AnalyticsTab

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

# API Key Setup
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
if user_provided_api_key:
    os.environ["GOOGLE_API_KEY"] = user_provided_api_key
    logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
else:
    logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.")


with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
                title="LinkedIn Organization Dashboard") as app:
    # --- STATE MANAGEMENT ---
    token_state = gr.State(value={
        "token": None, "client_id": None, "org_urn": None,
        "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
        "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
        "bubble_agentic_analysis_data": pd.DataFrame(), # To store agentic results from Bubble
        "url_user_token_temp_storage": None,
        "config_date_col_posts": "published_at", "config_date_col_mentions": "date",
        "config_date_col_followers": "date", "config_media_type_col": "media_type",
        "config_eb_labels_col": "li_eb_label"
    })

    # States for analytics tab chatbot
    chat_histories_st = gr.State({})
    current_chat_plot_id_st = gr.State(None)
    plot_data_for_chatbot_st = gr.State({})

    # States for agentic results display
    orchestration_raw_results_st = gr.State(None)
    key_results_for_selection_st = gr.State([])
    selected_key_result_ids_st = gr.State([])
    
    # --- NEW: Session-specific cache for reconstructed OKR data ---
    reconstruction_cache_st = gr.State({})


    # --- UI LAYOUT ---
    gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
    url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False)
    org_urn_display = gr.Textbox(label="Org URN (Hidden)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Status", interactive=False, value="Initializing...")

    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)

    def initial_data_load_sequence(url_token, org_urn_val, current_state):
        """
        Handles the initial data loading from Bubble.
        No longer generates dashboard HTML as the Home tab is now static.
        """
        status_msg, new_state = load_data_from_bubble(url_token, org_urn_val, current_state)
        return status_msg, new_state

    analytics_icons = {'bomb': BOMB_ICON, 'explore': EXPLORE_ICON, 'formula': FORMULA_ICON, 'active': ACTIVE_ICON}
    analytics_tab_instance = AnalyticsTab(
        token_state=token_state,
        chat_histories_st=chat_histories_st,
        current_chat_plot_id_st=current_chat_plot_id_st,
        plot_data_for_chatbot_st=plot_data_for_chatbot_st,
        plot_id_to_formula_map=PLOT_ID_TO_FORMULA_KEY_MAP,
        plot_formulas_data=PLOT_FORMULAS,
        icons=analytics_icons,
        fn_build_plot_area=build_analytics_tab_plot_area,
        fn_update_plot_figures=update_analytics_plots_figures,
        fn_create_placeholder_plot=create_placeholder_plot,
        fn_get_initial_insight=get_initial_insight_prompt_and_suggestions,
        fn_generate_llm_response=generate_llm_response
    )
    
    def update_report_display(selected_report_id: str, current_token_state: dict):
        """
        Updates only the report display markdown when a new report is selected.
        The OKR visualization remains unchanged as it's loaded initially.
        """
        if not selected_report_id:
            return gr.update(value="*Please select a report to view its details.*")
        
        agentic_df = current_token_state.get("bubble_agentic_analysis_data")
        if agentic_df is None or agentic_df.empty:
            return gr.update(value="*Analysis data not loaded or is empty.*")

        selected_report_series_df = agentic_df[agentic_df['_id'] == selected_report_id]
        if selected_report_series_df.empty:
            return gr.update(value=f"*Error: Report with ID '{selected_report_id}' not found.*")
        
        selected_report_series = selected_report_series_df.iloc[0]
        report_markdown = format_report_for_display(selected_report_series)
        
        return report_markdown

    with gr.Tabs() as tabs:
        # --- NEW HOME TAB ---
        with gr.TabItem("1️⃣ Home", id="tab_home"):
            # Call the new function from ui_generators to build the Home tab content
            btn_graphs, btn_reports, btn_okr, btn_help = build_home_tab_ui()

            # Link buttons to tab selection
            btn_graphs.click(fn=lambda: gr.update(selected="tab_analytics_module"), outputs=tabs)
            btn_reports.click(fn=lambda: gr.update(selected="tab_agentic_report"), outputs=tabs)
            btn_okr.click(fn=lambda: gr.update(selected="tab_agentic_okrs"), outputs=tabs)
            # btn_help.click(fn=lambda: gr.update(selected="tab_help"), outputs=tabs) # Uncomment if you add a help tab


        analytics_tab_instance.create_tab_ui() # This is the "Graphs" tab, assuming its ID is "tab_analytics"

        with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
            gr.Markdown("## 🤖 Comprehensive Analysis Report (from Bubble.io)")
            agentic_pipeline_status_md = gr.Markdown("Status: Loading report data...", visible=True)
            gr.Markdown("Questo report è stato pre-generato. Seleziona un report dalla libreria per visualizzarlo.")
            with gr.Row():
                report_selector_dd = gr.Dropdown(label="Report Library", choices=[], interactive=True, info="Select a report.")
            agentic_report_display_md = gr.Markdown("Please select a report from the library to view it.")
            if not AGENTIC_MODULES_LOADED:
                gr.Markdown("🔴 **Error:** Agentic modules could not be loaded.")

        with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
            gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (from Bubble.io)")
            gr.Markdown("Basato sull'analisi AI, l'agente ha proposto i seguenti OKR. Seleziona i Key Results per dettagli.")
            if not AGENTIC_MODULES_LOADED:
                gr.Markdown("🔴 **Error:** Agentic modules could not be loaded.")
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Suggested Key Results")
                    key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
                with gr.Column(scale=3):
                    gr.Markdown("### Detailed OKRs and Tasks")
                    okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui.")

            def update_okr_display_on_selection(selected_kr_ids: list, raw_results: dict, all_krs: list):
                if not raw_results or not AGENTIC_MODULES_LOADED:
                    return gr.update(value="Nessun dato di analisi caricato.")
                actionable_okrs = raw_results.get("actionable_okrs")
                if not actionable_okrs or not isinstance(actionable_okrs.get("okrs"), list):
                    return gr.update(value="Nessun OKR trovato.")
                okrs_list, kr_id_map = actionable_okrs["okrs"], {kr['unique_kr_id']: (kr['okr_index'], kr['kr_index']) for kr in all_krs}
                selected_krs_by_okr_idx = defaultdict(list)
                if selected_kr_ids:
                    for kr_id in selected_kr_ids:
                        if kr_id in kr_id_map:
                            okr_idx, kr_idx = kr_id_map[kr_id]
                            selected_krs_by_okr_idx[okr_idx].append(kr_idx)
                output_parts = []
                for okr_idx, okr in enumerate(okrs_list):
                    if not selected_kr_ids:
                        output_parts.append(format_single_okr_for_display(okr, okr_main_index=okr_idx))
                    elif okr_idx in selected_krs_by_okr_idx:
                        accepted_indices = selected_krs_by_okr_idx.get(okr_idx)
                        output_parts.append(format_single_okr_for_display(okr, accepted_kr_indices=accepted_indices, okr_main_index=okr_idx))
                final_md = "\n\n---\n\n".join(output_parts) if output_parts else "Nessun OKR corrisponde alla selezione."
                return gr.update(value=final_md)

            if AGENTIC_MODULES_LOADED:
                key_results_cbg.change(
                    fn=update_okr_display_on_selection,
                    inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
                    outputs=[okr_detail_display_md]
                )
    
    if AGENTIC_MODULES_LOADED:
        report_selector_dd.change(
            fn=update_report_display,
            inputs=[report_selector_dd, token_state],
            outputs=[agentic_report_display_md],
            show_progress="minimal"
        )

    agentic_display_outputs = [
        agentic_report_display_md, report_selector_dd, key_results_cbg,
        okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st,
        key_results_for_selection_st, agentic_pipeline_status_md, reconstruction_cache_st
    ]

    initial_load_event = org_urn_display.change(
        fn=initial_data_load_sequence,
        inputs=[url_user_token_display, org_urn_display, token_state],
        outputs=[status_box, token_state],
        show_progress="full"
    )

    initial_load_event.then(
        fn=analytics_tab_instance._refresh_analytics_graphs_ui,
        inputs=[token_state, analytics_tab_instance.date_filter_selector, analytics_tab_instance.custom_start_date_picker,
                analytics_tab_instance.custom_end_date_picker, chat_histories_st],
        outputs=analytics_tab_instance.graph_refresh_outputs_list,
        show_progress="full"
    ).then(
        fn=load_and_display_agentic_results,
        inputs=[token_state, reconstruction_cache_st],
        outputs=agentic_display_outputs,
        show_progress="minimal"
    )

if __name__ == "__main__":
    if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
        logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' is not set.")
    if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
        logging.warning("WARNING: One or more Bubble environment variables are not set.")
    if not AGENTIC_MODULES_LOADED:
        logging.warning("CRITICAL: Agentic modules failed to load.")
    if not os.environ.get("GEMINI_API_KEY"):
        logging.warning("WARNING: 'GEMINI_API_KEY' is not set.")

    app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)