File size: 18,413 Bytes
b560569
575b933
b0464a9
87a87e7
21988b0
791c130
8add36b
f7fc39b
575b933
826a2a1
2e2e19a
8add36b
575b933
21988b0
 
 
 
 
2e2e19a
21988b0
 
8add36b
 
21988b0
 
8add36b
21988b0
 
2601f1c
21988b0
 
 
5a483f8
21988b0
8add36b
ddc6277
21988b0
ddc6277
 
 
 
 
 
 
 
8add36b
21988b0
 
8add36b
ddc6277
21988b0
5cc5759
ddc6277
 
5cc5759
 
ddc6277
 
 
 
 
1fa587a
21988b0
 
7aa6c73
2a3b22e
3b4dccb
2a3b22e
2e2e19a
1644cc1
77179e2
 
1644cc1
77179e2
2e2e19a
77179e2
8add36b
adb3bbe
21988b0
 
67742c4
a342a6b
6a8e128
21988b0
 
 
 
6a8e128
 
2601f1c
67742c4
6277fe0
21988b0
8add36b
 
21988b0
adb3bbe
21988b0
 
 
 
7aa6c73
21988b0
a342a6b
21988b0
 
 
 
 
6277fe0
21988b0
a342a6b
575b933
21988b0
 
 
 
8add36b
21988b0
8add36b
21988b0
 
8add36b
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc5759
ddc6277
 
5cc5759
ddc6277
 
 
5cc5759
ddc6277
 
 
 
 
 
 
 
 
 
5cc5759
ddc6277
5cc5759
 
 
ddc6277
5cc5759
 
 
ddc6277
 
5cc5759
 
ddc6277
 
5cc5759
 
ddc6277
 
5cc5759
ddc6277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8add36b
791c130
21988b0
 
8add36b
6277fe0
21988b0
8add36b
1644cc1
5cc5759
8add36b
21988b0
 
5cc5759
 
 
 
 
 
 
 
 
 
 
 
8add36b
21988b0
1644cc1
21988b0
8add36b
21988b0
 
8add36b
21988b0
8add36b
 
21988b0
8add36b
 
 
21988b0
1644cc1
21988b0
8add36b
 
21988b0
 
8add36b
21988b0
8add36b
 
21988b0
8add36b
 
 
 
 
 
 
 
 
 
 
21988b0
 
 
 
 
 
 
 
8add36b
 
 
 
 
 
21988b0
8add36b
5cc5759
ddc6277
 
5cc5759
ddc6277
 
 
 
 
 
 
 
 
5cc5759
ddc6277
5cc5759
ddc6277
5cc5759
 
 
21988b0
ddc6277
21988b0
8add36b
ddc6277
8add36b
 
2e2e19a
8add36b
2e2e19a
8add36b
2e2e19a
8add36b
21988b0
8add36b
21988b0
1644cc1
21988b0
8add36b
1644cc1
2e2e19a
21988b0
1644cc1
8add36b
2e2e19a
8add36b
 
 
 
 
2e2e19a
8add36b
 
ddc6277
8add36b
ddc6277
 
 
8add36b
1644cc1
266ae82
adb3bbe
21988b0
8add36b
21988b0
a6bc02b
21988b0
8add36b
21988b0
 
 
1fa587a
8add36b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import gradio as gr
import pandas as pd
import os
import logging
from collections import defaultdict
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib

# --- Module Imports ---
from utils.gradio_utils import get_url_user_token

# Functions from newly created/refactored modules
from config import (
    PLOT_ID_TO_FORMULA_KEY_MAP,
    LINKEDIN_CLIENT_ID_ENV_VAR,
    BUBBLE_APP_NAME_ENV_VAR,
    BUBBLE_API_KEY_PRIVATE_ENV_VAR,
    BUBBLE_API_ENDPOINT_ENV_VAR
)
# UPDATED: Using the new data loading function from the refactored state manager
from services.state_manager import load_data_from_bubble
from ui.ui_generators import (
    display_main_dashboard,
    build_analytics_tab_plot_area,
    BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS

# --- CHATBOT MODULE IMPORTS ---
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions
from features.chatbot.chatbot_handler import generate_llm_response

# --- AGENTIC PIPELINE (DISPLAY ONLY) IMPORTS ---
try:
    # This is the main function called on initial load to populate the agentic tabs
    from run_agentic_pipeline import load_and_display_agentic_results
    # This function is now called when a new report is selected from the dropdown
    from services.report_data_handler import fetch_and_reconstruct_data_from_bubble
    # UI formatting functions
    from ui.insights_ui_generator import (
        format_report_for_display,
        extract_key_results_for_selection,
        format_single_okr_for_display
    )
    AGENTIC_MODULES_LOADED = True
except ImportError as e:
    logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.")
    AGENTIC_MODULES_LOADED = False
    # Placeholder functions to prevent app from crashing if imports fail
    def load_and_display_agentic_results(*args, **kwargs):
        return "Modules not loaded.", gr.update(), "Modules not loaded.", "Modules not loaded.", None, [], [], "Error"
    def fetch_and_reconstruct_data_from_bubble(*args, **kwargs):
        return None
    def format_report_for_display(report_data):
        return "Agentic modules not loaded. Report display unavailable."
    def extract_key_results_for_selection(okr_data):
        return []
    def format_single_okr_for_display(okr_data, **kwargs):
        return "Agentic modules not loaded. OKR display unavailable."


# --- ANALYTICS TAB MODULE IMPORT ---
from services.analytics_tab_module import AnalyticsTab

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

# API Key Setup
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
if user_provided_api_key:
    os.environ["GOOGLE_API_KEY"] = user_provided_api_key
    logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
else:
    logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.")


with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Organization Dashboard") as app:
    # --- STATE MANAGEMENT ---
    token_state = gr.State(value={
        "token": None, "client_id": None, "org_urn": None,
        "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
        "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
        "bubble_agentic_analysis_data": pd.DataFrame(), # To store agentic results from Bubble
        "url_user_token_temp_storage": None,
        # Config values remain useful for display components
        "config_date_col_posts": "published_at", "config_date_col_mentions": "date",
        "config_date_col_followers": "date", "config_media_type_col": "media_type",
        "config_eb_labels_col": "li_eb_label"
    })

    # States for analytics tab chatbot
    chat_histories_st = gr.State({})
    current_chat_plot_id_st = gr.State(None)
    plot_data_for_chatbot_st = gr.State({})

    # States for agentic results display
    orchestration_raw_results_st = gr.State(None) # Stores reconstructed report/OKR dict from Bubble
    key_results_for_selection_st = gr.State([])   # Stores list of dicts for KR selection
    selected_key_result_ids_st = gr.State([])     # Stores unique_kr_ids selected by the user

    # --- UI LAYOUT ---
    gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
    # Hidden components to receive URL parameters
    url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False)
    org_urn_display = gr.Textbox(label="Org URN (Hidden)", interactive=False, visible=False)
    # General status display
    status_box = gr.Textbox(label="Status", interactive=False, value="Initializing...")

    # Load URL parameters on page load
    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)

    # UPDATED: Simplified initial data loading sequence
    def initial_data_load_sequence(url_token, org_urn_val, current_state):
        # This function now only loads data from Bubble and updates the main dashboard display
        status_msg, new_state = load_data_from_bubble(url_token, org_urn_val, current_state)
        dashboard_content = display_main_dashboard(new_state)
        return status_msg, new_state, dashboard_content

    # Instantiate the AnalyticsTab module (no changes needed here)
    analytics_icons = {'bomb': BOMB_ICON, 'explore': EXPLORE_ICON, 'formula': FORMULA_ICON, 'active': ACTIVE_ICON}
    analytics_tab_instance = AnalyticsTab(
        token_state=token_state,
        chat_histories_st=chat_histories_st,
        current_chat_plot_id_st=current_chat_plot_id_st,
        plot_data_for_chatbot_st=plot_data_for_chatbot_st,
        plot_id_to_formula_map=PLOT_ID_TO_FORMULA_KEY_MAP,
        plot_formulas_data=PLOT_FORMULAS,
        icons=analytics_icons,
        fn_build_plot_area=build_analytics_tab_plot_area,
        fn_update_plot_figures=update_analytics_plots_figures,
        fn_create_placeholder_plot=create_placeholder_plot,
        fn_get_initial_insight=get_initial_insight_prompt_and_suggestions,
        fn_generate_llm_response=generate_llm_response
    )
    
    # --- MODIFIED: Comprehensive handler for report selection and OKR display ---
    def update_report_and_okr_display(selected_report_id: str, current_token_state: dict):
        """
        Finds the selected report in the state, formats its text for display,
        and crucially, fetches and reconstructs its associated OKRs and Tasks from Bubble.
        Returns a full set of UI updates for all agentic components.
        """
        # Define a default/error return tuple that matches the output components
        error_return_tuple = (
            gr.update(value="*Please select a report to view its details.*"),
            gr.update(choices=[], value=[], interactive=False),
            gr.update(value="*Please select a report to see OKRs.*"),
            None,
            [],
            []
        )

        if not selected_report_id:
            return error_return_tuple
        
        agentic_df = current_token_state.get("bubble_agentic_analysis_data")
        if agentic_df is None or agentic_df.empty:
            return error_return_tuple

        selected_report_series_df = agentic_df[agentic_df['_id'] == selected_report_id]
        if selected_report_series_df.empty:
            error_return_tuple[0] = gr.update(value=f"*Error: Report with ID {selected_report_id} not found.*")
            return error_return_tuple
            
        selected_report_series = selected_report_series_df.iloc[0]
        
        # 1. Format the main report text
        report_markdown = format_report_for_display(selected_report_series)
        
        # 2. Fetch and reconstruct the full OKR data for the selected report
        reconstructed_data = fetch_and_reconstruct_data_from_bubble(selected_report_series)

        # 3. Prepare UI updates for the OKR section based on the reconstructed data
        if reconstructed_data:
            raw_results_state = reconstructed_data
            actionable_okrs_dict = reconstructed_data.get("actionable_okrs", {})
            
            all_krs_state = extract_key_results_for_selection(actionable_okrs_dict)
            if all_krs_state:
                kr_choices = [(kr['kr_description'], kr['unique_kr_id']) for kr in all_krs_state]
                key_results_cbg_update = gr.update(choices=kr_choices, value=[], interactive=True)
                
                # Format all OKRs for initial display
                okrs_list = actionable_okrs_dict.get("okrs", [])
                output_md_parts = [
                    format_single_okr_for_display(okr_data, okr_main_index=okr_idx)
                    for okr_idx, okr_data in enumerate(okrs_list)
                ]
                okr_details_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else "No OKRs are defined in this report."
            else:
                key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
                okr_details_md = "No Key Results were found for this report."
                all_krs_state = []
        else:
            # Handle case where reconstruction fails
            key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
            okr_details_md = "Error: Could not fetch or reconstruct OKR data for this report."
            raw_results_state = None
            all_krs_state = []
        
        # 4. Return the complete set of updates for the UI
        return (
            report_markdown,
            key_results_cbg_update,
            okr_details_md,
            raw_results_state,
            [],  # Reset selected key results on new report selection
            all_krs_state
        )

    with gr.Tabs() as tabs:
        with gr.TabItem("1️⃣ Dashboard", id="tab_dashboard"):
            gr.Markdown("I dati visualizzati in questo pannello sono caricati direttamente da Bubble.io.")
            dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")

        # Use the AnalyticsTab module to create Tab 2
        analytics_tab_instance.create_tab_ui()

        # Tab 3: Agentic Analysis Report - MODIFIED
        with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
            gr.Markdown("## 🤖 Comprehensive Analysis Report (from Bubble.io)")
            agentic_pipeline_status_md = gr.Markdown("Status: Loading report data...", visible=True)
            gr.Markdown("Questo report è stato pre-generato da un agente AI e caricato da Bubble.io. Seleziona un report dalla libreria per visualizzarlo.")
            
            with gr.Row():
                report_selector_dd = gr.Dropdown(
                    label="Report Library",
                    choices=[],
                    interactive=True,
                    info="Select a previously generated report to view its details."
                )
            
            agentic_report_display_md = gr.Markdown("Please select a report from the library to view it.")
            
            if not AGENTIC_MODULES_LOADED:
                gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.")

        # Tab 4: Agentic OKRs & Tasks
        with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
            gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (from Bubble.io)")
            gr.Markdown("Basato sull'analisi AI pre-generata, l'agente ha proposto i seguenti OKR. Seleziona i Key Results per dettagli.")
            if not AGENTIC_MODULES_LOADED:
                gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.")
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Suggested Key Results")
                    key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
                with gr.Column(scale=3):
                    gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
                    okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo il caricamento dei dati.")

            # This handler logic for the CheckboxGroup remains the same, as it operates on loaded data.
            def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
                if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
                    return gr.update(value="Nessun dato di analisi caricato o moduli non disponibili.")
                actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs")
                if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
                    return gr.update(value="Nessun OKR trovato nei dati di analisi caricati.")

                okrs_list = actionable_okrs_dict["okrs"]
                if not all_krs_for_selection or not isinstance(all_krs_for_selection, list):
                    return gr.update(value="Errore interno: formato dati KR non valido.")

                kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
                selected_krs_by_okr_idx = defaultdict(list)
                if selected_kr_unique_ids:
                    for kr_unique_id in selected_kr_unique_ids:
                        if kr_unique_id in kr_id_to_indices:
                            okr_idx, kr_idx = kr_id_to_indices[kr_unique_id]
                            selected_krs_by_okr_idx[okr_idx].append(kr_idx)

                output_md_parts = []
                for okr_idx, okr_data in enumerate(okrs_list):
                    if not selected_kr_unique_ids: # Show all if nothing is selected
                        output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
                    elif okr_idx in selected_krs_by_okr_idx: # Show only OKRs that have a selected KR
                        accepted_indices = selected_krs_by_okr_idx.get(okr_idx)
                        output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices, okr_main_index=okr_idx))

                final_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else "Nessun OKR corrisponde alla selezione corrente."
                return gr.update(value=final_md)

            if AGENTIC_MODULES_LOADED:
                key_results_cbg.change(
                    fn=update_okr_display_on_selection,
                    inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
                    outputs=[okr_detail_display_md]
                )
    
    # --- MODIFIED: Event binding for the report selector dropdown ---
    # This now updates all agentic components, not just the report text.
    if AGENTIC_MODULES_LOADED:
        # Define the list of outputs that the handler function will update
        report_selection_outputs = [
            agentic_report_display_md,
            key_results_cbg,
            okr_detail_display_md,
            orchestration_raw_results_st,
            selected_key_result_ids_st,
            key_results_for_selection_st
        ]
        report_selector_dd.change(
            fn=update_report_and_okr_display,
            inputs=[report_selector_dd, token_state],
            outputs=report_selection_outputs,
            show_progress="minimal"
        )

    # --- EVENT HANDLING (SIMPLIFIED) ---
    # The output list for the initial agentic load
    agentic_display_outputs = [
        agentic_report_display_md,
        report_selector_dd,
        key_results_cbg,
        okr_detail_display_md,
        orchestration_raw_results_st,
        selected_key_result_ids_st,
        key_results_for_selection_st,
        agentic_pipeline_status_md
    ]

    # This is the main event chain that runs when the app loads
    initial_load_event = org_urn_display.change(
        fn=initial_data_load_sequence,
        inputs=[url_user_token_display, org_urn_display, token_state],
        outputs=[status_box, token_state, dashboard_display_html],
        show_progress="full"
    )

    # After initial data is loaded, refresh the analytics graphs
    initial_load_event.then(
        fn=analytics_tab_instance._refresh_analytics_graphs_ui,
        inputs=[
            token_state,
            analytics_tab_instance.date_filter_selector,
            analytics_tab_instance.custom_start_date_picker,
            analytics_tab_instance.custom_end_date_picker,
            chat_histories_st
        ],
        outputs=analytics_tab_instance.graph_refresh_outputs_list,
        show_progress="full"
    # Then, load and display the pre-computed agentic results, including reconstructed OKRs
    ).then(
        fn=load_and_display_agentic_results,
        inputs=[token_state], # Inputs simplified as the function now gets everything from state
        outputs=agentic_display_outputs,
        show_progress="minimal"
    )

if __name__ == "__main__":
    # Environment variable checks remain important
    if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
        logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' is not set.")
    if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
        logging.warning("WARNING: One or more Bubble environment variables are not set.")
    if not AGENTIC_MODULES_LOADED:
        logging.warning("CRITICAL: Agentic pipeline display modules failed to load. Tabs 3 and 4 will be non-functional.")
    if not os.environ.get("GEMINI_API_KEY"):
        logging.warning("WARNING: 'GEMINI_API_KEY' is not set. This may be needed for chatbot features.")

    app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)