Spaces:
Running
Running
File size: 31,708 Bytes
37335e7 7dc216d 37335e7 7dc216d 37335e7 f023388 37335e7 f023388 37335e7 7dc216d 37335e7 7dc216d 37335e7 7dc216d 936dfac f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 37335e7 7dc216d f023388 7dc216d f023388 37335e7 7dc216d f023388 37335e7 f023388 37335e7 7dc216d f023388 37335e7 7dc216d f023388 7dc216d f023388 7dc216d f023388 37335e7 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 7dc216d 37335e7 7dc216d f023388 7dc216d f023388 7dc216d 37335e7 f023388 7dc216d f023388 7dc216d f023388 7dc216d f023388 37335e7 f023388 7dc216d f023388 37335e7 7dc216d f023388 37335e7 7dc216d 37335e7 f023388 7dc216d f023388 7dc216d f023388 37335e7 f023388 37335e7 f023388 7dc216d 37335e7 7dc216d 37335e7 f023388 7dc216d 37335e7 f023388 7dc216d f023388 2166780 7dc216d 37335e7 f023388 37335e7 f1fb052 f023388 f1fb052 7dc216d f023388 f1fb052 2166780 7dc216d f1fb052 f023388 7dc216d f023388 7dc216d f1fb052 f023388 7dc216d f023388 7dc216d f1fb052 f023388 7dc216d f1fb052 f023388 7dc216d 955ed8d 7dc216d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
import json
import requests
import html
import time # Added for potential rate limiting if needed
from datetime import datetime
from collections import defaultdict
from urllib.parse import quote # Added for URL encoding
from transformers import pipeline
from sessions import create_session
from error_handling import display_error
from posts_categorization import batch_summarize_and_classify
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = "https://api.linkedin.com/rest"
# Initialize sentiment pipeline (loaded once globally)
sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
# --- Utility Function ---
def extract_text_from_mention_commentary(commentary):
"""
Extracts clean text from a commentary string, removing potential placeholders like {mention}.
"""
import re
if not commentary:
return ""
return re.sub(r"{.*?}", "", commentary).strip()
# --- Core Sentiment Analysis Helper ---
def _get_sentiment_from_text(text_to_analyze):
"""
Analyzes a single piece of text and returns its sentiment label and raw counts.
Returns a dict: {"label": "Sentiment Label", "counts": defaultdict(int)}
"""
sentiment_counts = defaultdict(int)
dominant_sentiment_label = "Neutral π" # Default
if not text_to_analyze or not text_to_analyze.strip():
return {"label": dominant_sentiment_label, "counts": sentiment_counts}
try:
# Truncate to avoid issues with very long texts for the model
analysis_result = sentiment_pipeline(str(text_to_analyze)[:512])
label = analysis_result[0]['label'].upper()
if label in ['POSITIVE', 'VERY POSITIVE']:
dominant_sentiment_label = 'Positive π'
sentiment_counts['Positive π'] += 1
elif label in ['NEGATIVE', 'VERY NEGATIVE']:
dominant_sentiment_label = 'Negative π'
sentiment_counts['Negative π'] += 1
elif label == 'NEUTRAL':
dominant_sentiment_label = 'Neutral π' # Already default, but for clarity
sentiment_counts['Neutral π'] += 1
else:
dominant_sentiment_label = 'Unknown' # Catch any other labels from the model
sentiment_counts['Unknown'] += 1
except Exception as e:
# Log the error with more context if possible
logging.error(f"Sentiment analysis failed for text snippet '{str(text_to_analyze)[:50]}...'. Error: {e}")
sentiment_counts['Error'] += 1
dominant_sentiment_label = "Error" # Indicate error in sentiment
return {"label": dominant_sentiment_label, "counts": sentiment_counts}
# --- Post Retrieval Functions ---
def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count):
"""
Fetches raw posts, their basic statistics, and performs summarization/categorization.
Does NOT fetch comments or analyze sentiment of comments here.
"""
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
session = create_session(comm_client_id, token=token_dict)
session.headers.update({
"X-Restli-Protocol-Version": "2.0.0",
"LinkedIn-Version": "202402"
})
posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED"
logging.info(f"Fetching posts from URL: {posts_url}")
try:
resp = session.get(posts_url)
resp.raise_for_status()
raw_posts_api = resp.json().get("elements", [])
logging.info(f"Fetched {len(raw_posts_api)} raw posts from API.")
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
text = getattr(e.response, 'text', 'No response text')
logging.error(f"Failed to fetch posts (Status: {status}): {e}. Response: {text}")
raise ValueError(f"Failed to fetch posts (Status: {status})") from e
except json.JSONDecodeError as e:
logging.error(f"Failed to decode JSON from posts response: {e}. Response text: {resp.text if resp else 'No response object'}")
raise ValueError("Failed to decode JSON from posts response") from e
if not raw_posts_api:
logging.info("No raw posts found.")
return [], {}, "DefaultOrgName"
post_urns_for_stats = [p["id"] for p in raw_posts_api if p.get("id")]
post_texts_for_nlp = []
for p in raw_posts_api:
text_content = p.get("commentary") or \
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
"[No text content]"
post_texts_for_nlp.append({"text": text_content, "id": p.get("id")})
logging.info(f"Prepared {len(post_texts_for_nlp)} posts for NLP (summarization/classification).")
if 'batch_summarize_and_classify' in globals():
structured_results_list = batch_summarize_and_classify(post_texts_for_nlp)
else:
logging.warning("batch_summarize_and_classify not found, using fallback.")
structured_results_list = [{"id": p["id"], "summary": "N/A", "category": "N/A"} for p in post_texts_for_nlp]
structured_results_map = {res["id"]: res for res in structured_results_list if "id" in res}
stats_map = {}
if post_urns_for_stats:
batch_size_stats = 20
for i in range(0, len(post_urns_for_stats), batch_size_stats):
batch_urns = post_urns_for_stats[i:i+batch_size_stats]
params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn}
share_idx = 0
ugc_idx = 0
for urn_str in batch_urns:
if ":share:" in urn_str:
params[f"shares[{share_idx}]"] = urn_str
share_idx += 1
elif ":ugcPost:" in urn_str:
params[f"ugcPosts[{ugc_idx}]"] = urn_str
ugc_idx += 1
else:
logging.warning(f"URN {urn_str} is not a recognized share or ugcPost type for stats. Skipping.")
continue
if not share_idx and not ugc_idx:
continue
try:
logging.info(f"Fetching stats for batch of {len(batch_urns)} URNs starting with URN: {batch_urns[0]}")
stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params)
stat_resp.raise_for_status()
stats_data = stat_resp.json()
for urn_key, stat_element_values in stats_data.get("results", {}).items():
stats_map[urn_key] = stat_element_values.get("totalShareStatistics", {})
if stats_data.get("errors"):
for urn_errored, error_detail in stats_data.get("errors", {}).items():
logging.warning(f"Error fetching stats for URN {urn_errored}: {error_detail.get('message', 'Unknown error')}")
logging.info(f"Successfully processed stats response for {len(batch_urns)} URNs. Current stats_map size: {len(stats_map)}")
except requests.exceptions.RequestException as e:
status_code = getattr(e.response, 'status_code', 'N/A')
response_text = getattr(e.response, 'text', 'No response text')
logging.warning(f"Failed to fetch stats for a batch (Status: {status_code}): {e}. Params: {params}. Response: {response_text}")
except json.JSONDecodeError as e:
logging.warning(f"Failed to decode JSON from stats response: {e}. Response: {stat_resp.text if stat_resp else 'No response text'}")
processed_raw_posts = []
for p in raw_posts_api:
post_id = p.get("id")
if not post_id:
logging.warning("Skipping raw post due to missing ID.")
continue
text_content = p.get("commentary") or \
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
"[No text content]"
timestamp = p.get("publishedAt") or p.get("createdAt") or p.get("firstPublishedAt")
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
structured_res = structured_results_map.get(post_id, {"summary": "N/A", "category": "N/A"})
processed_raw_posts.append({
"id": post_id,
"raw_text": text_content,
"summary": structured_res["summary"],
"category": structured_res["category"],
"published_at_timestamp": timestamp,
"published_at_iso": published_at_iso,
"organization_urn": p.get("author", f"urn:li:organization:{org_urn.split(':')[-1]}"),
"is_ad": 'adContext' in p,
"media_category": p.get("content",{}).get("com.linkedin.voyager.feed.render.LinkedInVideoComponent",{}).get("mediaCategory") or \
p.get("content",{}).get("com.linkedin.voyager.feed.render.ImageComponent",{}).get("mediaCategory") or \
p.get("content",{}).get("com.linkedin.voyager.feed.render.ArticleComponent",{}).get("mediaCategory") or "NONE"
})
logging.info(f"Processed {len(processed_raw_posts)} posts with core data.")
return processed_raw_posts, stats_map, "DefaultOrgName"
def fetch_comments(comm_client_id, community_token, post_urns, stats_map):
"""
Fetches comments for a list of post URNs.
Uses stats_map to potentially skip posts with 0 comments.
"""
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
linkedin_session = create_session(comm_client_id, token=token_dict)
linkedin_session.headers.update({
'LinkedIn-Version': "202402",
"X-Restli-Protocol-Version": "2.0.0"
})
all_comments_by_post = {}
logging.info(f"Fetching comments for {len(post_urns)} posts.")
for post_urn in post_urns:
post_stats = stats_map.get(post_urn, {})
comment_count_from_stats = post_stats.get("commentSummary", {}).get("totalComments", post_stats.get('commentCount', 0))
if comment_count_from_stats == 0:
logging.info(f"Skipping comment fetch for {post_urn} as commentCount is 0 in stats_map.")
all_comments_by_post[post_urn] = []
continue
try:
encoded_post_urn = quote(post_urn, safe='')
url = f"{API_REST_BASE}/comments?q=entity&entityUrn={encoded_post_urn}&sortOrder=CHRONOLOGICAL"
logging.debug(f"Fetching comments from URL: {url} for post URN: {post_urn}")
response = linkedin_session.get(url)
if response.status_code == 200:
elements = response.json().get('elements', [])
comments_texts = []
for c in elements:
comment_text = c.get('message', {}).get('text')
if comment_text:
comments_texts.append(comment_text)
all_comments_by_post[post_urn] = comments_texts
logging.info(f"Fetched {len(comments_texts)} comments for {post_urn}.")
elif response.status_code == 403:
logging.warning(f"Forbidden (403) to fetch comments for {post_urn}. URL: {url}. Response: {response.text}. Check permissions or API version.")
all_comments_by_post[post_urn] = []
elif response.status_code == 404:
logging.warning(f"Comments not found (404) for {post_urn}. URL: {url}. Response: {response.text}")
all_comments_by_post[post_urn] = []
else:
logging.error(f"Error fetching comments for {post_urn}. Status: {response.status_code}. URL: {url}. Response: {response.text}")
all_comments_by_post[post_urn] = []
except requests.exceptions.RequestException as e:
logging.error(f"RequestException fetching comments for {post_urn}: {e}")
all_comments_by_post[post_urn] = []
except json.JSONDecodeError as e:
logging.error(f"JSONDecodeError fetching comments for {post_urn}. Response: {response.text if 'response' in locals() else 'N/A'}. Error: {e}")
all_comments_by_post[post_urn] = []
except Exception as e:
logging.error(f"Unexpected error fetching comments for {post_urn}: {e}")
all_comments_by_post[post_urn] = []
return all_comments_by_post
def analyze_sentiment(all_comments_data):
"""
Analyzes sentiment for comments grouped by post_urn using the helper function.
all_comments_data is a dict: {post_urn: [comment_text_1, comment_text_2,...]}
Returns a dict: {post_urn: {"sentiment": "DominantOverallSentiment", "percentage": X.X, "details": {aggregated_counts}}}
"""
results_by_post = {}
logging.info(f"Analyzing aggregated sentiment for comments from {len(all_comments_data)} posts.")
for post_urn, comments_list in all_comments_data.items():
aggregated_sentiment_counts = defaultdict(int)
total_valid_comments_for_post = 0
if not comments_list:
results_by_post[post_urn] = {"sentiment": "Neutral π", "percentage": 0.0, "details": dict(aggregated_sentiment_counts)}
continue
for comment_text in comments_list:
if not comment_text or not comment_text.strip():
continue
# Use the helper for individual comment sentiment
single_comment_sentiment = _get_sentiment_from_text(comment_text)
# Aggregate counts
for label, count in single_comment_sentiment["counts"].items():
aggregated_sentiment_counts[label] += count
if single_comment_sentiment["label"] != "Error": # Count valid analyses
total_valid_comments_for_post +=1
dominant_overall_sentiment = "Neutral π" # Default
percentage = 0.0
if total_valid_comments_for_post > 0:
# Determine dominant sentiment from aggregated_sentiment_counts
# Exclude 'Error' from being a dominant sentiment unless it's the only category with counts
valid_sentiments = {k: v for k, v in aggregated_sentiment_counts.items() if k != 'Error' and v > 0}
if not valid_sentiments:
dominant_overall_sentiment = 'Error' if aggregated_sentiment_counts['Error'] > 0 else 'Neutral π'
else:
# Simple max count logic for dominance
dominant_overall_sentiment = max(valid_sentiments, key=valid_sentiments.get)
if dominant_overall_sentiment != 'Error':
percentage = round((aggregated_sentiment_counts[dominant_overall_sentiment] / total_valid_comments_for_post) * 100, 1)
else: # if dominant is 'Error' or only errors were found
percentage = 0.0
elif aggregated_sentiment_counts['Error'] > 0 : # No valid comments, but errors occurred
dominant_overall_sentiment = 'Error'
results_by_post[post_urn] = {
"sentiment": dominant_overall_sentiment,
"percentage": percentage,
"details": dict(aggregated_sentiment_counts) # Store aggregated counts
}
logging.debug(f"Aggregated sentiment for post {post_urn}: {results_by_post[post_urn]}")
return results_by_post
def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post):
"""
Combines processed raw post data with their statistics and overall comment sentiment.
"""
detailed_post_list = []
logging.info(f"Compiling detailed data for {len(processed_raw_posts)} posts.")
for proc_post in processed_raw_posts:
post_id = proc_post["id"]
stats = stats_map.get(post_id, {})
likes = stats.get("likeCount", 0)
comments_stat_count = stats.get("commentSummary", {}).get("totalComments", stats.get("commentCount", 0))
clicks = stats.get("clickCount", 0)
shares = stats.get("shareCount", 0)
impressions = stats.get("impressionCount", 0)
unique_impressions = stats.get("uniqueImpressionsCount", stats.get("impressionCount", 0))
engagement_numerator = likes + comments_stat_count + clicks + shares
engagement_rate = (engagement_numerator / impressions * 100) if impressions and impressions > 0 else 0.0
sentiment_info = sentiments_per_post.get(post_id, {"sentiment": "Neutral π", "percentage": 0.0, "details": {}})
display_text = html.escape(proc_post["raw_text"][:250]).replace("\n", "<br>") + \
("..." if len(proc_post["raw_text"]) > 250 else "")
when_formatted = datetime.fromtimestamp(proc_post["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M") \
if proc_post["published_at_timestamp"] else "Unknown"
detailed_post_list.append({
"id": post_id,
"when": when_formatted,
"text_for_display": display_text,
"raw_text": proc_post["raw_text"],
"likes": likes,
"comments_stat_count": comments_stat_count,
"clicks": clicks,
"shares": shares,
"impressions": impressions,
"uniqueImpressionsCount": unique_impressions,
"engagement": f"{engagement_rate:.2f}%",
"engagement_raw": engagement_rate,
"sentiment": sentiment_info["sentiment"],
"sentiment_percent": sentiment_info["percentage"],
"sentiment_details": sentiment_info.get("details", {}),
"summary": proc_post["summary"],
"category": proc_post["category"],
"organization_urn": proc_post["organization_urn"],
"is_ad": proc_post["is_ad"],
"media_category": proc_post.get("media_category", "NONE"),
"published_at": proc_post["published_at_iso"]
})
logging.info(f"Compiled {len(detailed_post_list)} detailed posts.")
return detailed_post_list
def prepare_data_for_bubble(detailed_posts, all_actual_comments_data):
"""
Prepares data lists for uploading to Bubble.
- detailed_posts: List of comprehensively compiled post objects.
- all_actual_comments_data: Dict of {post_urn: [comment_texts]} from fetch_comments.
"""
li_posts = []
li_post_stats = []
li_post_comments = []
logging.info("Preparing posts data for Bubble.")
if not detailed_posts:
logging.warning("No detailed posts to prepare for Bubble.")
return [], [], []
org_urn_default = detailed_posts[0]["organization_urn"] if detailed_posts else "urn:li:organization:UNKNOWN"
for post_data in detailed_posts:
li_posts.append({
"organization_urn": post_data["organization_urn"],
"id": post_data["id"],
"is_ad": post_data["is_ad"],
"media_category": post_data.get("media_category", "NONE"),
"published_at": post_data["published_at"],
"sentiment": post_data["sentiment"],
"text": post_data["raw_text"],
"summary_text": post_data["summary"],
"li_eb_label": post_data["category"]
})
li_post_stats.append({
"clickCount": post_data["clicks"],
"commentCount": post_data["comments_stat_count"],
"engagement": post_data["engagement_raw"],
"impressionCount": post_data["impressions"],
"likeCount": post_data["likes"],
"shareCount": post_data["shares"],
"uniqueImpressionsCount": post_data["uniqueImpressionsCount"],
"post_id": post_data["id"],
"organization_urn": post_data["organization_urn"]
})
for post_urn, comments_text_list in all_actual_comments_data.items():
current_post_org_urn = org_urn_default
for p in detailed_posts:
if p["id"] == post_urn:
current_post_org_urn = p["organization_urn"]
break
for single_comment_text in comments_text_list:
if single_comment_text and single_comment_text.strip():
li_post_comments.append({
"comment_text": single_comment_text,
"post_id": post_urn,
"organization_urn": current_post_org_urn
})
logging.info(f"Prepared {len(li_posts)} posts, {len(li_post_stats)} stats entries, and {len(li_post_comments)} comments for Bubble.")
return li_posts, li_post_stats, li_post_comments
# --- Mentions Retrieval Functions ---
def fetch_linkedin_mentions_core(comm_client_id, community_token, org_urn, count=20):
"""
Fetches raw mention notifications and the details of the posts where the organization was mentioned.
Returns a list of processed mention data (internal structure).
"""
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
session = create_session(comm_client_id, token=token_dict)
session.headers.update({
"X-Restli-Protocol-Version": "2.0.0",
"LinkedIn-Version": "202502"
})
encoded_org_urn = quote(org_urn, safe='')
notifications_url_base = (
f"{API_REST_BASE}/organizationalEntityNotifications"
f"?q=criteria"
f"&actions=List(SHARE_MENTION)"
f"&organizationalEntity={encoded_org_urn}"
f"&count={count}"
)
all_notifications = []
start_index = 0
processed_mentions_internal = []
page_count = 0
max_pages = 10
while page_count < max_pages:
current_url = f"{notifications_url_base}&start={start_index}"
logging.info(f"Fetching notifications page {page_count + 1} from URL: {current_url}")
try:
resp = session.get(current_url)
resp.raise_for_status()
data = resp.json()
elements = data.get("elements", [])
if not elements:
logging.info(f"No more notifications found on page {page_count + 1}. Total notifications fetched: {len(all_notifications)}.")
break
all_notifications.extend(elements)
paging = data.get("paging", {})
if 'start' not in paging or 'count' not in paging or len(elements) < paging.get('count', count):
logging.info(f"Last page of notifications fetched. Total notifications: {len(all_notifications)}.")
break
start_index = paging['start'] + paging['count']
page_count += 1
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
text = getattr(e.response, 'text', 'No response text')
logging.error(f"Failed to fetch notifications (Status: {status}): {e}. Response: {text}")
break
except json.JSONDecodeError as e:
logging.error(f"Failed to decode JSON from notifications response: {e}. Response: {resp.text if resp else 'No resp obj'}")
break
if page_count >= max_pages:
logging.info(f"Reached max_pages ({max_pages}) for fetching notifications.")
break
if not all_notifications:
logging.info("No mention notifications found after fetching.")
return []
mention_share_urns = list(set([
n.get("generatedActivity") for n in all_notifications
if n.get("action") == "SHARE_MENTION" and n.get("generatedActivity")
]))
logging.info(f"Found {len(mention_share_urns)} unique share URNs from SHARE_MENTION notifications.")
for share_urn in mention_share_urns:
encoded_share_urn = quote(share_urn, safe='')
post_detail_url = f"{API_REST_BASE}/posts/{encoded_share_urn}"
logging.info(f"Fetching details for mentioned post: {post_detail_url}")
try:
post_resp = session.get(post_detail_url)
post_resp.raise_for_status()
post_data = post_resp.json()
commentary_raw = post_data.get("commentary")
if not commentary_raw and "specificContent" in post_data:
share_content = post_data.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {})
commentary_raw = share_content.get("shareCommentaryV2", {}).get("text", "")
if not commentary_raw:
logging.warning(f"No commentary found for share URN {share_urn}. Skipping.")
continue
mention_text_cleaned = extract_text_from_mention_commentary(commentary_raw)
timestamp = post_data.get("publishedAt") or post_data.get("createdAt") or post_data.get("firstPublishedAt")
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
author_urn = post_data.get("author", "urn:li:unknown")
processed_mentions_internal.append({
"mention_id": f"mention_{share_urn}",
"share_urn": share_urn,
"mention_text_raw": commentary_raw,
"mention_text_cleaned": mention_text_cleaned,
"published_at_timestamp": timestamp,
"published_at_iso": published_at_iso,
"mentioned_by_author_urn": author_urn,
"organization_urn_mentioned": org_urn
})
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
text = getattr(e.response, 'text', 'No response text')
logging.warning(f"Failed to fetch post details for share URN {share_urn} (Status: {status}): {e}. Response: {text}")
except json.JSONDecodeError as e:
logging.warning(f"Failed to decode JSON for post details {share_urn}: {e}. Response: {post_resp.text if post_resp else 'No resp obj'}")
logging.info(f"Processed {len(processed_mentions_internal)} mentions with their post details.")
return processed_mentions_internal
def analyze_mentions_sentiment(processed_mentions_list):
"""
Analyzes sentiment for the text of each processed mention using the helper function.
Input: list of processed_mention dicts (internal structure from fetch_linkedin_mentions_core).
Returns: a dict {mention_id: {"sentiment_label": "DominantSentiment", "percentage": 100.0, "details": {counts}}}
"""
mention_sentiments_map = {}
logging.info(f"Analyzing individual sentiment for {len(processed_mentions_list)} mentions.")
for mention_data in processed_mentions_list:
mention_internal_id = mention_data["mention_id"] # Internal ID from fetch_linkedin_mentions_core
text_to_analyze = mention_data.get("mention_text_cleaned", "")
sentiment_result = _get_sentiment_from_text(text_to_analyze)
# For single text, percentage is 100% for the dominant label if not error
percentage = 0.0
if sentiment_result["label"] != "Error" and any(sentiment_result["counts"].values()):
percentage = 100.0
mention_sentiments_map[mention_internal_id] = {
"sentiment_label": sentiment_result["label"], # The dominant sentiment label
"percentage": percentage,
"details": dict(sentiment_result["counts"]) # Raw counts for this specific mention
}
logging.debug(f"Individual sentiment for mention {mention_internal_id}: {mention_sentiments_map[mention_internal_id]}")
return mention_sentiments_map
def compile_detailed_mentions(processed_mentions_list, mention_sentiments_map):
"""
Combines processed mention data (internal structure) with their sentiment analysis
into the user-specified output format.
processed_mentions_list: list of dicts from fetch_linkedin_mentions_core
mention_sentiments_map: dict from analyze_mentions_sentiment, keyed by "mention_id" (internal)
and contains "sentiment_label".
"""
detailed_mentions_output = []
logging.info(f"Compiling detailed data for {len(processed_mentions_list)} mentions into specified format.")
for mention_core_data in processed_mentions_list:
mention_internal_id = mention_core_data["mention_id"]
sentiment_info = mention_sentiments_map.get(mention_internal_id, {"sentiment_label": "Neutral π"})
date_formatted = "Unknown"
if mention_core_data["published_at_timestamp"]:
try:
date_formatted = datetime.fromtimestamp(mention_core_data["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M")
except TypeError:
logging.warning(f"Could not format timestamp for mention_id {mention_internal_id}")
detailed_mentions_output.append({
"date": date_formatted, # User-specified field name
"id": mention_core_data["share_urn"], # User-specified field name (URN of the post with mention)
"mention_text": mention_core_data["mention_text_cleaned"], # User-specified field name
"organization_urn": mention_core_data["organization_urn_mentioned"], # User-specified field name
"sentiment_label": sentiment_info["sentiment_label"] # User-specified field name
})
logging.info(f"Compiled {len(detailed_mentions_output)} detailed mentions with specified fields.")
return detailed_mentions_output
def prepare_mentions_for_bubble(compiled_detailed_mentions_list):
"""
Prepares mention data for uploading to a Bubble table.
The input `compiled_detailed_mentions_list` is already in the user-specified format:
[{"date": ..., "id": ..., "mention_text": ..., "organization_urn": ..., "sentiment_label": ...}, ...]
This function directly uses these fields as per user's selection for Bubble upload.
"""
li_mentions_bubble = []
logging.info(f"Preparing {len(compiled_detailed_mentions_list)} compiled mentions for Bubble upload.")
if not compiled_detailed_mentions_list:
return []
for mention_data in compiled_detailed_mentions_list:
# The mention_data dictionary already has the keys:
# "date", "id", "mention_text", "organization_urn", "sentiment_label"
# These are used directly for the Bubble upload list.
li_mentions_bubble.append({
"date": mention_data["date"],
"id": mention_data["id"],
"mention_text": mention_data["mention_text"],
"organization_urn": mention_data["organization_urn"],
"sentiment_label": mention_data["sentiment_label"]
# If Bubble table has different field names, mapping would be done here.
# Example: "bubble_mention_date": mention_data["date"],
# For now, using direct mapping as per user's selected code for the append.
})
logging.info(f"Prepared {len(li_mentions_bubble)} mention entries for Bubble, using direct field names from compiled data.")
return li_mentions_bubble
|