LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
266ae82 verified
raw
history blame
26.4 kB
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# from functools import partial # No longer needed if gr.State(value=plot_id) is used
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_ui_components # Import the new UI builder function
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot, generate_engagement_type_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot, # For initializing plots
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Analytics Tab: Plot Update Function (Original, generates figures) ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
"""
Prepares analytics data using external processing function and then generates plot figures.
This function is primarily responsible for returning the Matplotlib figure objects.
"""
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 23 # This should match the number of plots defined in plot_configs
if not token_state_value or not token_state_value.get("token"):
message = "❌ Access denied. No token. Cannot generate analytics."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"❌ Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels")
logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.")
try:
plot_figs = []
plot_figs.append(generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_engagement_type_plot(filtered_merged_posts_df))
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
plot_figs.append(fig_mentions_activity_shared) # Original mention plot slot 1
plot_figs.append(fig_mention_sentiment_shared) # Original mention plot slot 2
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority"))
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment'))
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
# For the "Mention Analysis" section, we reuse the figures generated earlier
plot_figs.append(fig_mentions_activity_shared) # New UI slot for mention volume, reuses figure
plot_figs.append(fig_mention_sentiment_shared) # New UI slot for mention sentiment, reuses figure
message = f"πŸ“Š Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
final_plot_figs = []
for i, p_fig in enumerate(plot_figs):
if p_fig is not None and not isinstance(p_fig, str):
final_plot_figs.append(p_fig)
else:
logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}")
final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure."))
while len(final_plot_figs) < num_expected_plots:
logging.warning(f"Padding missing plot figure with placeholder. Expected {num_expected_plots}, got {len(final_plot_figs)}.")
final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated."))
logging.info(f"Successfully generated {len(final_plot_figs)} plot figures for {num_expected_plots} UI slots.")
return [message] + final_plot_figs[:num_expected_plots]
except Exception as e:
error_msg = f"❌ Error generating analytics plot figures: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(),
"bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0,
"url_user_token_temp_storage": None,
"config_date_col_posts": "published_at",
"config_date_col_mentions": "date",
"config_date_col_followers": "date",
"config_media_type_col": "media_type",
"config_eb_labels_col": "eb_labels"
})
gr.Markdown("# πŸš€ LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
sync_data_btn = gr.Button("πŸ”„ Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analytics", id="tab_analytics"):
gr.Markdown("## πŸ“ˆ LinkedIn Performance Analytics")
gr.Markdown("Select a date range to filter analytics. Click πŸ’£ for insights.")
analytics_status_md = gr.Markdown("Analytics status will appear here...")
with gr.Row():
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range", value="Last 30 Days"
)
custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("πŸ” Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
# --- Define plot configurations ---
# (Order must match the order of figures returned by update_analytics_plots_figures)
plot_configs = [
{"label": "Posts Activity Over Time", "id": "posts_activity", "section": "Posts & Engagement Overview"},
{"label": "Post Engagement Types", "id": "engagement_type", "section": "Posts & Engagement Overview"},
{"label": "Mentions Activity Over Time", "id": "mentions_activity", "section": "Mentions Overview"},
{"label": "Mention Sentiment Distribution", "id": "mention_sentiment", "section": "Mentions Overview"},
{"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"},
{"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"},
{"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"},
{"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"},
{"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"},
{"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"},
{"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"},
{"label": "Reach Over Time (Clicks)", "id": "reach_over_time", "section": "Post Performance Insights"},
{"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"},
{"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"},
{"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"},
{"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"},
{"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"}
]
assert len(plot_configs) == 23, "Mismatch in number of plot configurations and expected plots."
# --- Build Analytics Tab UI using the function from ui_generators ---
# This function will create the gr.Markdown for sections and rows for plots.
# It needs to be called within this gr.Blocks() context.
plot_ui_objects = build_analytics_tab_ui_components(plot_configs)
active_insight_plot_id_state = gr.State(None) # Stores the plot_id of the currently open insight panel
# --- Bomb Button Click Handler ---
def handle_bomb_click(plot_id_clicked, current_active_plot_id, current_token_state):
logging.info(f"Bomb clicked for: {plot_id_clicked}. Currently active: {current_active_plot_id}")
updates = []
new_active_id = None
if plot_id_clicked == current_active_plot_id:
new_active_id = None # Toggle off
logging.info(f"Closing insights for {plot_id_clicked}")
else:
new_active_id = plot_id_clicked # Activate new one
logging.info(f"Opening insights for {plot_id_clicked}, closing others.")
for p_id_iter, ui_obj_dict in plot_ui_objects.items():
is_target_one = (p_id_iter == new_active_id)
updates.append(gr.update(visible=is_target_one)) # For insights_col visibility
if is_target_one:
# TODO: Implement actual insight generation logic here
insight_text = f"**Insights for {ui_obj_dict['label']}**\n\n"
insight_text += f"Plot ID: `{p_id_iter}`.\n"
insight_text += "Detailed analysis would involve examining trends, anomalies, and correlations related to this specific chart.\n"
insight_text += "For example, for 'Posts Activity', we might look for days with unusually high or low activity and correlate with external events or content types."
updates.append(gr.update(value=insight_text))
else:
updates.append(gr.update(value=f"Click πŸ’£ for insights on {ui_obj_dict['label']}...")) # Reset placeholder
updates.append(new_active_id) # New value for active_insight_plot_id_state
logging.info(f"Returning {len(updates)-1} UI updates. New active ID: {new_active_id}")
return updates
# --- Connect Bomb Buttons ---
bomb_click_dynamic_outputs = []
# The order of items in bomb_click_dynamic_outputs must match the order of iteration
# in handle_bomb_click when it creates its `updates` list.
# plot_ui_objects is a dictionary, so .keys() gives an arbitrary order if not Python 3.7+
# To be safe, iterate based on plot_configs order for constructing outputs.
for config in plot_configs:
p_id_key = config["id"]
bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_col"])
bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_md"])
bomb_click_dynamic_outputs.append(active_insight_plot_id_state)
for config in plot_configs:
plot_id = config["id"]
components_dict = plot_ui_objects[plot_id]
components_dict["bomb"].click(
fn=handle_bomb_click,
inputs=[gr.State(value=plot_id), active_insight_plot_id_state, token_state],
outputs=bomb_click_dynamic_outputs,
api_name=f"show_insights_{plot_id}" # Gradio handles None api_name if plot_id is None (though it shouldn't be)
)
# --- Function to Refresh All Analytics UI (Plots + Reset Insights) ---
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val):
logging.info("Refreshing all analytics UI elements.")
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:]
all_updates = [status_message_update]
# Plot figure updates - iterate based on plot_configs to ensure order
for i, config in enumerate(plot_configs):
p_id_key = config["id"]
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
logging.error(f"Mismatch: Expected figure for {p_id_key} but not enough figures generated.")
all_updates.append(create_placeholder_plot("Figure Error", f"No figure for {p_id_key}"))
# Insight column visibility and markdown content reset - iterate based on plot_configs
for config in plot_configs:
p_id_key = config["id"]
ui_obj_dict_val = plot_ui_objects[p_id_key]
all_updates.append(gr.update(visible=False)) # Hide insights_col
all_updates.append(gr.update(value=f"Click πŸ’£ for insights on {ui_obj_dict_val['label']}...")) # Reset insights_md
all_updates.append(None) # Reset active_insight_plot_id_state
return all_updates
# --- Define outputs for the apply_filter_btn and sync.then() ---
apply_filter_and_sync_outputs = [analytics_status_md]
# Iterate based on plot_configs to ensure order
for config in plot_configs: # Plot components
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["plot"])
for config in plot_configs: # Insight column components
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_col"])
for config in plot_configs: # Insight markdown components
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_md"])
apply_filter_and_sync_outputs.append(active_insight_plot_id_state) # State component
# --- Connect Apply Filter Button ---
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs,
show_progress="full"
)
with gr.TabItem("3️⃣ Mentions", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("πŸ”„ Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("πŸ”„ Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
# --- Define the full sync_click_event chain HERE, now that analytics outputs are known ---
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble environment variables not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)