File size: 26,449 Bytes
b560569
575b933
b0464a9
87a87e7
791c130
 
266ae82
 
f7fc39b
575b933
266ae82
4ad44b9
575b933
 
 
 
2a3b22e
575b933
 
 
 
 
266ae82
 
9d99925
3b4dccb
266ae82
3b4dccb
 
 
 
 
 
 
 
 
deb2291
 
266ae82
deb2291
 
c6716b6
 
 
 
3b4dccb
b0464a9
2a3b22e
3b4dccb
2a3b22e
266ae82
 
791c130
266ae82
 
791c130
266ae82
 
deb2291
791c130
 
 
3b4dccb
 
a342a6b
575b933
266ae82
 
 
 
3b4dccb
348bc84
791c130
 
 
 
 
3b4dccb
 
791c130
 
 
266ae82
 
348bc84
3b4dccb
 
791c130
 
266ae82
 
 
c6716b6
 
266ae82
deb2291
266ae82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb2291
791c130
 
 
266ae82
791c130
 
266ae82
 
 
 
c6716b6
266ae82
 
 
 
 
 
 
 
 
791c130
575b933
266ae82
791c130
3b4dccb
 
a342a6b
b0464a9
2a3b22e
adb3bbe
266ae82
179ea1f
67742c4
a342a6b
266ae82
 
a342a6b
575b933
266ae82
791c130
266ae82
 
c6716b6
266ae82
 
67742c4
adb3bbe
a342a6b
575b933
 
f9d8231
179ea1f
a342a6b
575b933
0612e1d
 
4ad44b9
266ae82
0612e1d
adb3bbe
791c130
 
a342a6b
0612e1d
 
575b933
a342a6b
2a3b22e
4ad44b9
2a3b22e
a342a6b
 
2a3b22e
791c130
 
 
266ae82
791c130
 
 
 
 
 
266ae82
791c130
266ae82
 
791c130
 
 
 
3b902c0
 
 
791c130
 
 
 
 
 
266ae82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
791c130
266ae82
 
 
 
3b4dccb
266ae82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6716b6
266ae82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
791c130
266ae82
791c130
266ae82
a342a6b
adb3bbe
06d22e5
791c130
a342a6b
 
266ae82
4ad44b9
 
266ae82
a342a6b
 
575b933
791c130
a342a6b
 
 
266ae82
a342a6b
 
575b933
a342a6b
 
 
266ae82
a342a6b
538b42b
791c130
266ae82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575b933
adb3bbe
575b933
791c130
575b933
 
 
791c130
a342a6b
 
575b933
a342a6b
791c130
a342a6b
791c130
266ae82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# from functools import partial # No longer needed if gr.State(value=plot_id) is used

# --- Module Imports ---
from gradio_utils import get_url_user_token

# Functions from newly created/refactored modules
from config import (
    LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
    BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
    display_main_dashboard,
    run_mentions_tab_display,
    run_follower_stats_tab_display,
    build_analytics_tab_ui_components # Import the new UI builder function
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
    generate_posts_activity_plot, generate_engagement_type_plot,
    generate_mentions_activity_plot, generate_mention_sentiment_plot,
    generate_followers_count_over_time_plot,
    generate_followers_growth_rate_plot,
    generate_followers_by_demographics_plot,
    generate_engagement_rate_over_time_plot,
    generate_reach_over_time_plot,
    generate_impressions_over_time_plot,
    create_placeholder_plot, # For initializing plots
    generate_likes_over_time_plot,
    generate_clicks_over_time_plot,
    generate_shares_over_time_plot,
    generate_comments_over_time_plot,
    generate_comments_sentiment_breakdown_plot,
    generate_post_frequency_plot,
    generate_content_format_breakdown_plot,
    generate_content_topic_breakdown_plot
)

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

# --- Analytics Tab: Plot Update Function (Original, generates figures) ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
    """
    Prepares analytics data using external processing function and then generates plot figures.
    This function is primarily responsible for returning the Matplotlib figure objects.
    """
    logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
    num_expected_plots = 23 # This should match the number of plots defined in plot_configs

    if not token_state_value or not token_state_value.get("token"):
        message = "❌ Access denied. No token. Cannot generate analytics."
        logging.warning(message)
        placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)]
        return [message] + placeholder_figs

    try:
        (filtered_merged_posts_df,
         filtered_mentions_df,
         date_filtered_follower_stats_df,
         raw_follower_stats_df,
         start_dt_for_msg, end_dt_for_msg) = \
            prepare_filtered_analytics_data(
                token_state_value, date_filter_option, custom_start_date, custom_end_date
            )
    except Exception as e:
        error_msg = f"❌ Error preparing analytics data: {e}"
        logging.error(error_msg, exc_info=True)
        placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)]
        return [error_msg] + placeholder_figs

    date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
    date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
    media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
    eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels")

    logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
    logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.")

    try:
        plot_figs = []
        plot_figs.append(generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_engagement_type_plot(filtered_merged_posts_df))
        
        fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
        fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
        
        plot_figs.append(fig_mentions_activity_shared) # Original mention plot slot 1
        plot_figs.append(fig_mention_sentiment_shared) # Original mention plot slot 2

        plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
        plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
        plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location"))
        plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role"))
        plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry"))
        plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority"))
        plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment'))
        plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
        plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
        
        # For the "Mention Analysis" section, we reuse the figures generated earlier
        plot_figs.append(fig_mentions_activity_shared) # New UI slot for mention volume, reuses figure
        plot_figs.append(fig_mention_sentiment_shared) # New UI slot for mention sentiment, reuses figure

        message = f"πŸ“Š Analytics updated for period: {date_filter_option}"
        if date_filter_option == "Custom Range":
            s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
            e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
            message += f" (From: {s_display} To: {e_display})"
        
        final_plot_figs = []
        for i, p_fig in enumerate(plot_figs):
            if p_fig is not None and not isinstance(p_fig, str):
                final_plot_figs.append(p_fig)
            else:
                logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}")
                final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure."))
        
        while len(final_plot_figs) < num_expected_plots:
            logging.warning(f"Padding missing plot figure with placeholder. Expected {num_expected_plots}, got {len(final_plot_figs)}.")
            final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated."))
        
        logging.info(f"Successfully generated {len(final_plot_figs)} plot figures for {num_expected_plots} UI slots.")
        return [message] + final_plot_figs[:num_expected_plots]

    except Exception as e:
        error_msg = f"❌ Error generating analytics plot figures: {e}"
        logging.error(error_msg, exc_info=True)
        placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
        return [error_msg] + placeholder_figs


# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Organization Dashboard") as app:

    token_state = gr.State(value={
        "token": None, "client_id": None, "org_urn": None,
        "bubble_posts_df": pd.DataFrame(),
        "bubble_post_stats_df": pd.DataFrame(),
        "bubble_mentions_df": pd.DataFrame(),
        "bubble_follower_stats_df": pd.DataFrame(),
        "fetch_count_for_api": 0,
        "url_user_token_temp_storage": None,
        "config_date_col_posts": "published_at",
        "config_date_col_mentions": "date",
        "config_date_col_followers": "date",
        "config_media_type_col": "media_type",
        "config_eb_labels_col": "eb_labels"
    })

    gr.Markdown("# πŸš€ LinkedIn Organization Dashboard")
    url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
    org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)

    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)

    def initial_load_sequence(url_token, org_urn_val, current_state):
        logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
        status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
        dashboard_content = display_main_dashboard(new_state)
        return status_msg, new_state, btn_update, dashboard_content

    with gr.Tabs() as tabs:
        with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
            gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
            sync_data_btn = gr.Button("πŸ”„ Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
            sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
            dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")

            org_urn_display.change(
                fn=initial_load_sequence,
                inputs=[url_user_token_display, org_urn_display, token_state],
                outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
                show_progress="full"
            )
            
        with gr.TabItem("2️⃣ Analytics", id="tab_analytics"):
            gr.Markdown("## πŸ“ˆ LinkedIn Performance Analytics")
            gr.Markdown("Select a date range to filter analytics. Click πŸ’£ for insights.")
            
            analytics_status_md = gr.Markdown("Analytics status will appear here...")

            with gr.Row():
                date_filter_selector = gr.Radio(
                    ["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
                    label="Select Date Range", value="Last 30 Days"
                )
                custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime")
                custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime")
            
            apply_filter_btn = gr.Button("πŸ” Apply Filter & Refresh Analytics", variant="primary")

            def toggle_custom_date_pickers(selection):
                is_custom = selection == "Custom Range"
                return gr.update(visible=is_custom), gr.update(visible=is_custom)

            date_filter_selector.change(
                fn=toggle_custom_date_pickers,
                inputs=[date_filter_selector],
                outputs=[custom_start_date_picker, custom_end_date_picker]
            )

            # --- Define plot configurations ---
            # (Order must match the order of figures returned by update_analytics_plots_figures)
            plot_configs = [
                {"label": "Posts Activity Over Time", "id": "posts_activity", "section": "Posts & Engagement Overview"},
                {"label": "Post Engagement Types", "id": "engagement_type", "section": "Posts & Engagement Overview"},
                {"label": "Mentions Activity Over Time", "id": "mentions_activity", "section": "Mentions Overview"}, 
                {"label": "Mention Sentiment Distribution", "id": "mention_sentiment", "section": "Mentions Overview"}, 
                {"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"},
                {"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"},
                {"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"},
                {"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"},
                {"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"},
                {"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"},
                {"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"},
                {"label": "Reach Over Time (Clicks)", "id": "reach_over_time", "section": "Post Performance Insights"},
                {"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"},
                {"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"},
                {"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"},
                {"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"},
                {"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"},
                {"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"},
                {"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"},
                {"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"},
                {"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"},
                {"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"}, 
                {"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"} 
            ]
            assert len(plot_configs) == 23, "Mismatch in number of plot configurations and expected plots."
            
            # --- Build Analytics Tab UI using the function from ui_generators ---
            # This function will create the gr.Markdown for sections and rows for plots.
            # It needs to be called within this gr.Blocks() context.
            plot_ui_objects = build_analytics_tab_ui_components(plot_configs)
            
            active_insight_plot_id_state = gr.State(None) # Stores the plot_id of the currently open insight panel

            # --- Bomb Button Click Handler ---
            def handle_bomb_click(plot_id_clicked, current_active_plot_id, current_token_state):
                logging.info(f"Bomb clicked for: {plot_id_clicked}. Currently active: {current_active_plot_id}")
                updates = [] 
                new_active_id = None

                if plot_id_clicked == current_active_plot_id:
                    new_active_id = None # Toggle off
                    logging.info(f"Closing insights for {plot_id_clicked}")
                else:
                    new_active_id = plot_id_clicked # Activate new one
                    logging.info(f"Opening insights for {plot_id_clicked}, closing others.")

                for p_id_iter, ui_obj_dict in plot_ui_objects.items():
                    is_target_one = (p_id_iter == new_active_id)
                    updates.append(gr.update(visible=is_target_one)) # For insights_col visibility

                    if is_target_one:
                        # TODO: Implement actual insight generation logic here
                        insight_text = f"**Insights for {ui_obj_dict['label']}**\n\n"
                        insight_text += f"Plot ID: `{p_id_iter}`.\n"
                        insight_text += "Detailed analysis would involve examining trends, anomalies, and correlations related to this specific chart.\n"
                        insight_text += "For example, for 'Posts Activity', we might look for days with unusually high or low activity and correlate with external events or content types."
                        updates.append(gr.update(value=insight_text))
                    else:
                        updates.append(gr.update(value=f"Click πŸ’£ for insights on {ui_obj_dict['label']}...")) # Reset placeholder
                
                updates.append(new_active_id) # New value for active_insight_plot_id_state
                logging.info(f"Returning {len(updates)-1} UI updates. New active ID: {new_active_id}")
                return updates

            # --- Connect Bomb Buttons ---
            bomb_click_dynamic_outputs = []
            # The order of items in bomb_click_dynamic_outputs must match the order of iteration
            # in handle_bomb_click when it creates its `updates` list.
            # plot_ui_objects is a dictionary, so .keys() gives an arbitrary order if not Python 3.7+
            # To be safe, iterate based on plot_configs order for constructing outputs.
            for config in plot_configs:
                p_id_key = config["id"]
                bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_col"])
                bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_md"])
            bomb_click_dynamic_outputs.append(active_insight_plot_id_state)

            for config in plot_configs:
                plot_id = config["id"]
                components_dict = plot_ui_objects[plot_id]
                components_dict["bomb"].click(
                    fn=handle_bomb_click,
                    inputs=[gr.State(value=plot_id), active_insight_plot_id_state, token_state],
                    outputs=bomb_click_dynamic_outputs,
                    api_name=f"show_insights_{plot_id}" # Gradio handles None api_name if plot_id is None (though it shouldn't be)
                )
            
            # --- Function to Refresh All Analytics UI (Plots + Reset Insights) ---
            def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val):
                logging.info("Refreshing all analytics UI elements.")
                plot_generation_results = update_analytics_plots_figures(
                    current_token_state, date_filter_val, custom_start_val, custom_end_val
                )
                
                status_message_update = plot_generation_results[0]
                generated_plot_figures = plot_generation_results[1:]

                all_updates = [status_message_update]

                # Plot figure updates - iterate based on plot_configs to ensure order
                for i, config in enumerate(plot_configs):
                    p_id_key = config["id"]
                    if i < len(generated_plot_figures):
                        all_updates.append(generated_plot_figures[i])
                    else:
                        logging.error(f"Mismatch: Expected figure for {p_id_key} but not enough figures generated.")
                        all_updates.append(create_placeholder_plot("Figure Error", f"No figure for {p_id_key}"))
                
                # Insight column visibility and markdown content reset - iterate based on plot_configs
                for config in plot_configs:
                    p_id_key = config["id"]
                    ui_obj_dict_val = plot_ui_objects[p_id_key]
                    all_updates.append(gr.update(visible=False)) # Hide insights_col
                    all_updates.append(gr.update(value=f"Click πŸ’£ for insights on {ui_obj_dict_val['label']}...")) # Reset insights_md

                all_updates.append(None) # Reset active_insight_plot_id_state
                return all_updates

            # --- Define outputs for the apply_filter_btn and sync.then() ---
            apply_filter_and_sync_outputs = [analytics_status_md]
            # Iterate based on plot_configs to ensure order
            for config in plot_configs: # Plot components
                apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["plot"])
            for config in plot_configs: # Insight column components
                apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_col"])
            for config in plot_configs: # Insight markdown components
                apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_md"])
            apply_filter_and_sync_outputs.append(active_insight_plot_id_state) # State component

            # --- Connect Apply Filter Button ---
            apply_filter_btn.click(
                fn=refresh_all_analytics_ui_elements,
                inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
                outputs=apply_filter_and_sync_outputs,
                show_progress="full"
            )

        with gr.TabItem("3️⃣ Mentions", id="tab_mentions"):
            refresh_mentions_display_btn = gr.Button("πŸ”„ Refresh Mentions Display (from local data)", variant="secondary")
            mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
            mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
            refresh_mentions_display_btn.click(
                fn=run_mentions_tab_display, inputs=[token_state],
                outputs=[mentions_html, mentions_sentiment_dist_plot],
                show_progress="full"
            )

        with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"):
            refresh_follower_stats_btn = gr.Button("πŸ”„ Refresh Follower Stats Display (from local data)", variant="secondary")
            follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
            with gr.Row():
                fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
            with gr.Row():
                fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
                fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")

            refresh_follower_stats_btn.click(
                fn=run_follower_stats_tab_display, inputs=[token_state],
                outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
                show_progress="full"
            )
    
    # --- Define the full sync_click_event chain HERE, now that analytics outputs are known ---
    sync_event_part1 = sync_data_btn.click(
        fn=sync_all_linkedin_data_orchestrator,
        inputs=[token_state],
        outputs=[sync_status_html_output, token_state], 
        show_progress="full"
    )
    sync_event_part2 = sync_event_part1.then(
        fn=process_and_store_bubble_token,
        inputs=[url_user_token_display, org_urn_display, token_state], 
        outputs=[status_box, token_state, sync_data_btn], 
        show_progress=False
    )
    sync_event_part3 = sync_event_part2.then(
        fn=display_main_dashboard,
        inputs=[token_state], 
        outputs=[dashboard_display_html],
        show_progress=False
    )
    sync_event_final = sync_event_part3.then(
        fn=refresh_all_analytics_ui_elements,
        inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], 
        outputs=apply_filter_and_sync_outputs, 
        show_progress="full"
    )


if __name__ == "__main__":
    if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
        logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
    if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
       not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
       not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
        logging.warning("WARNING: Bubble environment variables not fully set.")

    try:
        logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
    except ImportError:
        logging.error("Matplotlib is not installed. Plots will not be generated.")

    app.launch(server_name="0.0.0.0", server_port=7860, debug=True)