Spaces:
Running
Running
File size: 26,449 Bytes
b560569 575b933 b0464a9 87a87e7 791c130 266ae82 f7fc39b 575b933 266ae82 4ad44b9 575b933 2a3b22e 575b933 266ae82 9d99925 3b4dccb 266ae82 3b4dccb deb2291 266ae82 deb2291 c6716b6 3b4dccb b0464a9 2a3b22e 3b4dccb 2a3b22e 266ae82 791c130 266ae82 791c130 266ae82 deb2291 791c130 3b4dccb a342a6b 575b933 266ae82 3b4dccb 348bc84 791c130 3b4dccb 791c130 266ae82 348bc84 3b4dccb 791c130 266ae82 c6716b6 266ae82 deb2291 266ae82 deb2291 791c130 266ae82 791c130 266ae82 c6716b6 266ae82 791c130 575b933 266ae82 791c130 3b4dccb a342a6b b0464a9 2a3b22e adb3bbe 266ae82 179ea1f 67742c4 a342a6b 266ae82 a342a6b 575b933 266ae82 791c130 266ae82 c6716b6 266ae82 67742c4 adb3bbe a342a6b 575b933 f9d8231 179ea1f a342a6b 575b933 0612e1d 4ad44b9 266ae82 0612e1d adb3bbe 791c130 a342a6b 0612e1d 575b933 a342a6b 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 791c130 266ae82 791c130 266ae82 791c130 266ae82 791c130 3b902c0 791c130 266ae82 791c130 266ae82 3b4dccb 266ae82 c6716b6 266ae82 791c130 266ae82 791c130 266ae82 a342a6b adb3bbe 06d22e5 791c130 a342a6b 266ae82 4ad44b9 266ae82 a342a6b 575b933 791c130 a342a6b 266ae82 a342a6b 575b933 a342a6b 266ae82 a342a6b 538b42b 791c130 266ae82 575b933 adb3bbe 575b933 791c130 575b933 791c130 a342a6b 575b933 a342a6b 791c130 a342a6b 791c130 266ae82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# from functools import partial # No longer needed if gr.State(value=plot_id) is used
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_ui_components # Import the new UI builder function
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot, generate_engagement_type_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot, # For initializing plots
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Analytics Tab: Plot Update Function (Original, generates figures) ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
"""
Prepares analytics data using external processing function and then generates plot figures.
This function is primarily responsible for returning the Matplotlib figure objects.
"""
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 23 # This should match the number of plots defined in plot_configs
if not token_state_value or not token_state_value.get("token"):
message = "β Access denied. No token. Cannot generate analytics."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"β Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels")
logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.")
try:
plot_figs = []
plot_figs.append(generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_engagement_type_plot(filtered_merged_posts_df))
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
plot_figs.append(fig_mentions_activity_shared) # Original mention plot slot 1
plot_figs.append(fig_mention_sentiment_shared) # Original mention plot slot 2
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority"))
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment'))
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
# For the "Mention Analysis" section, we reuse the figures generated earlier
plot_figs.append(fig_mentions_activity_shared) # New UI slot for mention volume, reuses figure
plot_figs.append(fig_mention_sentiment_shared) # New UI slot for mention sentiment, reuses figure
message = f"π Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
final_plot_figs = []
for i, p_fig in enumerate(plot_figs):
if p_fig is not None and not isinstance(p_fig, str):
final_plot_figs.append(p_fig)
else:
logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}")
final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure."))
while len(final_plot_figs) < num_expected_plots:
logging.warning(f"Padding missing plot figure with placeholder. Expected {num_expected_plots}, got {len(final_plot_figs)}.")
final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated."))
logging.info(f"Successfully generated {len(final_plot_figs)} plot figures for {num_expected_plots} UI slots.")
return [message] + final_plot_figs[:num_expected_plots]
except Exception as e:
error_msg = f"β Error generating analytics plot figures: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(),
"bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0,
"url_user_token_temp_storage": None,
"config_date_col_posts": "published_at",
"config_date_col_mentions": "date",
"config_date_col_followers": "date",
"config_media_type_col": "media_type",
"config_eb_labels_col": "eb_labels"
})
gr.Markdown("# π LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1οΈβ£ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"):
gr.Markdown("## π LinkedIn Performance Analytics")
gr.Markdown("Select a date range to filter analytics. Click π£ for insights.")
analytics_status_md = gr.Markdown("Analytics status will appear here...")
with gr.Row():
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range", value="Last 30 Days"
)
custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
# --- Define plot configurations ---
# (Order must match the order of figures returned by update_analytics_plots_figures)
plot_configs = [
{"label": "Posts Activity Over Time", "id": "posts_activity", "section": "Posts & Engagement Overview"},
{"label": "Post Engagement Types", "id": "engagement_type", "section": "Posts & Engagement Overview"},
{"label": "Mentions Activity Over Time", "id": "mentions_activity", "section": "Mentions Overview"},
{"label": "Mention Sentiment Distribution", "id": "mention_sentiment", "section": "Mentions Overview"},
{"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"},
{"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"},
{"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"},
{"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"},
{"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"},
{"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"},
{"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"},
{"label": "Reach Over Time (Clicks)", "id": "reach_over_time", "section": "Post Performance Insights"},
{"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"},
{"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"},
{"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"},
{"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"},
{"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"}
]
assert len(plot_configs) == 23, "Mismatch in number of plot configurations and expected plots."
# --- Build Analytics Tab UI using the function from ui_generators ---
# This function will create the gr.Markdown for sections and rows for plots.
# It needs to be called within this gr.Blocks() context.
plot_ui_objects = build_analytics_tab_ui_components(plot_configs)
active_insight_plot_id_state = gr.State(None) # Stores the plot_id of the currently open insight panel
# --- Bomb Button Click Handler ---
def handle_bomb_click(plot_id_clicked, current_active_plot_id, current_token_state):
logging.info(f"Bomb clicked for: {plot_id_clicked}. Currently active: {current_active_plot_id}")
updates = []
new_active_id = None
if plot_id_clicked == current_active_plot_id:
new_active_id = None # Toggle off
logging.info(f"Closing insights for {plot_id_clicked}")
else:
new_active_id = plot_id_clicked # Activate new one
logging.info(f"Opening insights for {plot_id_clicked}, closing others.")
for p_id_iter, ui_obj_dict in plot_ui_objects.items():
is_target_one = (p_id_iter == new_active_id)
updates.append(gr.update(visible=is_target_one)) # For insights_col visibility
if is_target_one:
# TODO: Implement actual insight generation logic here
insight_text = f"**Insights for {ui_obj_dict['label']}**\n\n"
insight_text += f"Plot ID: `{p_id_iter}`.\n"
insight_text += "Detailed analysis would involve examining trends, anomalies, and correlations related to this specific chart.\n"
insight_text += "For example, for 'Posts Activity', we might look for days with unusually high or low activity and correlate with external events or content types."
updates.append(gr.update(value=insight_text))
else:
updates.append(gr.update(value=f"Click π£ for insights on {ui_obj_dict['label']}...")) # Reset placeholder
updates.append(new_active_id) # New value for active_insight_plot_id_state
logging.info(f"Returning {len(updates)-1} UI updates. New active ID: {new_active_id}")
return updates
# --- Connect Bomb Buttons ---
bomb_click_dynamic_outputs = []
# The order of items in bomb_click_dynamic_outputs must match the order of iteration
# in handle_bomb_click when it creates its `updates` list.
# plot_ui_objects is a dictionary, so .keys() gives an arbitrary order if not Python 3.7+
# To be safe, iterate based on plot_configs order for constructing outputs.
for config in plot_configs:
p_id_key = config["id"]
bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_col"])
bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_md"])
bomb_click_dynamic_outputs.append(active_insight_plot_id_state)
for config in plot_configs:
plot_id = config["id"]
components_dict = plot_ui_objects[plot_id]
components_dict["bomb"].click(
fn=handle_bomb_click,
inputs=[gr.State(value=plot_id), active_insight_plot_id_state, token_state],
outputs=bomb_click_dynamic_outputs,
api_name=f"show_insights_{plot_id}" # Gradio handles None api_name if plot_id is None (though it shouldn't be)
)
# --- Function to Refresh All Analytics UI (Plots + Reset Insights) ---
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val):
logging.info("Refreshing all analytics UI elements.")
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:]
all_updates = [status_message_update]
# Plot figure updates - iterate based on plot_configs to ensure order
for i, config in enumerate(plot_configs):
p_id_key = config["id"]
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
logging.error(f"Mismatch: Expected figure for {p_id_key} but not enough figures generated.")
all_updates.append(create_placeholder_plot("Figure Error", f"No figure for {p_id_key}"))
# Insight column visibility and markdown content reset - iterate based on plot_configs
for config in plot_configs:
p_id_key = config["id"]
ui_obj_dict_val = plot_ui_objects[p_id_key]
all_updates.append(gr.update(visible=False)) # Hide insights_col
all_updates.append(gr.update(value=f"Click π£ for insights on {ui_obj_dict_val['label']}...")) # Reset insights_md
all_updates.append(None) # Reset active_insight_plot_id_state
return all_updates
# --- Define outputs for the apply_filter_btn and sync.then() ---
apply_filter_and_sync_outputs = [analytics_status_md]
# Iterate based on plot_configs to ensure order
for config in plot_configs: # Plot components
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["plot"])
for config in plot_configs: # Insight column components
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_col"])
for config in plot_configs: # Insight markdown components
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_md"])
apply_filter_and_sync_outputs.append(active_insight_plot_id_state) # State component
# --- Connect Apply Filter Button ---
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs,
show_progress="full"
)
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4οΈβ£ Follower Stats", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
# --- Define the full sync_click_event chain HERE, now that analytics outputs are known ---
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble environment variables not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|