Spaces:
Running
Running
# app.py | |
# (Showing relevant parts that need modification) | |
import gradio as gr | |
import pandas as pd | |
import os | |
import logging | |
import matplotlib | |
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio | |
import matplotlib.pyplot as plt | |
import time # For profiling if needed | |
from datetime import datetime, timedelta # Added timedelta | |
import numpy as np | |
# --- Module Imports --- | |
from gradio_utils import get_url_user_token | |
# Functions from newly created/refactored modules | |
from config import ( | |
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, | |
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR) | |
from state_manager import process_and_store_bubble_token | |
from sync_logic import sync_all_linkedin_data_orchestrator | |
from ui_generators import ( | |
display_main_dashboard, | |
run_mentions_tab_display, | |
run_follower_stats_tab_display, | |
build_analytics_tab_plot_area, | |
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON | |
) | |
from analytics_data_processing import prepare_filtered_analytics_data # This is key for data structure | |
from analytics_plot_generator import ( | |
generate_posts_activity_plot, | |
generate_mentions_activity_plot, generate_mention_sentiment_plot, | |
generate_followers_count_over_time_plot, | |
generate_followers_growth_rate_plot, | |
generate_followers_by_demographics_plot, | |
generate_engagement_rate_over_time_plot, | |
generate_reach_over_time_plot, | |
generate_impressions_over_time_plot, | |
create_placeholder_plot, | |
generate_likes_over_time_plot, | |
generate_clicks_over_time_plot, | |
generate_shares_over_time_plot, | |
generate_comments_over_time_plot, | |
generate_comments_sentiment_breakdown_plot, | |
generate_post_frequency_plot, | |
generate_content_format_breakdown_plot, | |
generate_content_topic_breakdown_plot | |
) | |
from formulas import PLOT_FORMULAS | |
# --- NEW CHATBOT MODULE IMPORTS --- | |
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT | |
from chatbot_handler import generate_llm_response | |
# --- END NEW CHATBOT MODULE IMPORTS --- | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') | |
# Mapping from plot_configs IDs to PLOT_FORMULAS keys | |
PLOT_ID_TO_FORMULA_KEY_MAP = { | |
"posts_activity": "posts_activity", | |
"mentions_activity": "mentions_activity", | |
"mention_sentiment": "mention_sentiment", | |
"followers_count": "followers_count_over_time", | |
"followers_growth_rate": "followers_growth_rate", | |
"followers_by_location": "followers_by_demographics", | |
"followers_by_role": "followers_by_demographics", | |
"followers_by_industry": "followers_by_demographics", | |
"followers_by_seniority": "followers_by_demographics", | |
"engagement_rate": "engagement_rate_over_time", | |
"reach_over_time": "reach_over_time", | |
"impressions_over_time": "impressions_over_time", | |
"likes_over_time": "likes_over_time", | |
"clicks_over_time": "clicks_over_time", | |
"shares_over_time": "shares_over_time", | |
"comments_over_time": "comments_over_time", | |
"comments_sentiment": "comments_sentiment_breakdown", | |
"post_frequency_cs": "post_frequency", | |
"content_format_breakdown_cs": "content_format_breakdown", | |
"content_topic_breakdown_cs": "content_topic_breakdown", | |
"mention_analysis_volume": "mentions_activity", | |
"mention_analysis_sentiment": "mention_sentiment" | |
} | |
# --- Helper function to generate textual data summaries for chatbot --- | |
def generate_chatbot_data_summaries( | |
plot_configs_list, | |
filtered_merged_posts_df, | |
filtered_mentions_df, | |
date_filtered_follower_stats_df, # Expected to contain 'follower_gains_monthly' | |
raw_follower_stats_df, # Expected to contain other demographics like 'follower_geo', 'follower_industry' | |
token_state_value | |
): | |
""" | |
Generates textual summaries for each plot ID to be used by the chatbot, | |
based on the corrected understanding of DataFrame structures and follower count columns. | |
""" | |
data_summaries = {} | |
# --- Date and Config Columns from token_state --- | |
# For Posts | |
date_col_posts = token_state_value.get("config_date_col_posts", "published_at") | |
media_type_col_name = token_state_value.get("config_media_type_col", "media_type") | |
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label") | |
# For Mentions | |
date_col_mentions = token_state_value.get("config_date_col_mentions", "date") | |
mentions_sentiment_col = "sentiment_label" # As per user's mention df structure | |
# For Follower Stats - Actual column names provided by user | |
follower_count_organic_col = "follower_count_organic" | |
follower_count_paid_col = "follower_count_paid" | |
# For Follower Stats (Demographics from raw_follower_stats_df) | |
follower_demographics_type_col = "follower_count_type" # Column indicating 'follower_geo', 'follower_industry' | |
follower_demographics_category_col = "category_name" # Column indicating 'USA', 'Technology' | |
# For Follower Gains/Growth (from date_filtered_follower_stats_df) | |
follower_gains_type_col = "follower_count_type" # Should be 'follower_gains_monthly' | |
follower_gains_date_col = "category_name" # This is 'YYYY-MM-DD' | |
# --- Helper: Safely convert to datetime --- | |
def safe_to_datetime(series, errors='coerce'): | |
return pd.to_datetime(series, errors=errors) | |
# --- Prepare DataFrames (copy and convert dates) --- | |
if filtered_merged_posts_df is not None and not filtered_merged_posts_df.empty: | |
posts_df = filtered_merged_posts_df.copy() | |
if date_col_posts in posts_df.columns: | |
posts_df[date_col_posts] = safe_to_datetime(posts_df[date_col_posts]) | |
else: | |
logging.warning(f"Date column '{date_col_posts}' not found in posts_df for chatbot summary.") | |
else: | |
posts_df = pd.DataFrame() | |
if filtered_mentions_df is not None and not filtered_mentions_df.empty: | |
mentions_df = filtered_mentions_df.copy() | |
if date_col_mentions in mentions_df.columns: | |
mentions_df[date_col_mentions] = safe_to_datetime(mentions_df[date_col_mentions]) | |
else: | |
logging.warning(f"Date column '{date_col_mentions}' not found in mentions_df for chatbot summary.") | |
else: | |
mentions_df = pd.DataFrame() | |
# For date_filtered_follower_stats_df (monthly gains) | |
if date_filtered_follower_stats_df is not None and not date_filtered_follower_stats_df.empty: | |
follower_monthly_df = date_filtered_follower_stats_df.copy() | |
if follower_gains_type_col in follower_monthly_df.columns: | |
follower_monthly_df = follower_monthly_df[follower_monthly_df[follower_gains_type_col] == 'follower_gains_monthly'].copy() | |
if follower_gains_date_col in follower_monthly_df.columns: | |
follower_monthly_df['datetime_obj'] = safe_to_datetime(follower_monthly_df[follower_gains_date_col]) | |
follower_monthly_df = follower_monthly_df.dropna(subset=['datetime_obj']) | |
# Calculate total gains | |
if follower_count_organic_col in follower_monthly_df.columns and follower_count_paid_col in follower_monthly_df.columns: | |
follower_monthly_df[follower_count_organic_col] = pd.to_numeric(follower_monthly_df[follower_count_organic_col], errors='coerce').fillna(0) | |
follower_monthly_df[follower_count_paid_col] = pd.to_numeric(follower_monthly_df[follower_count_paid_col], errors='coerce').fillna(0) | |
follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_organic_col] + follower_monthly_df[follower_count_paid_col] | |
elif follower_count_organic_col in follower_monthly_df.columns: # Only organic exists | |
follower_monthly_df[follower_count_organic_col] = pd.to_numeric(follower_monthly_df[follower_count_organic_col], errors='coerce').fillna(0) | |
follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_organic_col] | |
elif follower_count_paid_col in follower_monthly_df.columns: # Only paid exists | |
follower_monthly_df[follower_count_paid_col] = pd.to_numeric(follower_monthly_df[follower_count_paid_col], errors='coerce').fillna(0) | |
follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_paid_col] | |
else: | |
logging.warning(f"Neither '{follower_count_organic_col}' nor '{follower_count_paid_col}' found in follower_monthly_df for total gains calculation.") | |
follower_monthly_df['total_monthly_gains'] = 0 # Avoid KeyError later | |
else: | |
logging.warning(f"Date column '{follower_gains_date_col}' (from category_name) not found in follower_monthly_df for chatbot summary.") | |
if 'datetime_obj' not in follower_monthly_df.columns: | |
follower_monthly_df['datetime_obj'] = pd.NaT | |
if 'total_monthly_gains' not in follower_monthly_df.columns: | |
follower_monthly_df['total_monthly_gains'] = 0 | |
else: | |
follower_monthly_df = pd.DataFrame(columns=[follower_gains_date_col, 'total_monthly_gains', 'datetime_obj']) | |
if raw_follower_stats_df is not None and not raw_follower_stats_df.empty: | |
follower_demographics_df = raw_follower_stats_df.copy() | |
# Calculate total followers for demographics | |
if follower_count_organic_col in follower_demographics_df.columns and follower_count_paid_col in follower_demographics_df.columns: | |
follower_demographics_df[follower_count_organic_col] = pd.to_numeric(follower_demographics_df[follower_count_organic_col], errors='coerce').fillna(0) | |
follower_demographics_df[follower_count_paid_col] = pd.to_numeric(follower_demographics_df[follower_count_paid_col], errors='coerce').fillna(0) | |
follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_organic_col] + follower_demographics_df[follower_count_paid_col] | |
elif follower_count_organic_col in follower_demographics_df.columns: | |
follower_demographics_df[follower_count_organic_col] = pd.to_numeric(follower_demographics_df[follower_count_organic_col], errors='coerce').fillna(0) | |
follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_organic_col] | |
elif follower_count_paid_col in follower_demographics_df.columns: | |
follower_demographics_df[follower_count_paid_col] = pd.to_numeric(follower_demographics_df[follower_count_paid_col], errors='coerce').fillna(0) | |
follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_paid_col] | |
else: | |
logging.warning(f"Neither '{follower_count_organic_col}' nor '{follower_count_paid_col}' found in follower_demographics_df for total count calculation.") | |
if 'total_follower_count' not in follower_demographics_df.columns: | |
follower_demographics_df['total_follower_count'] = 0 | |
else: | |
follower_demographics_df = pd.DataFrame() | |
for plot_cfg in plot_configs_list: | |
plot_id = plot_cfg["id"] | |
plot_label = plot_cfg["label"] | |
summary_text = f"No specific data summary available for '{plot_label}' for the selected period." | |
try: | |
# --- FOLLOWER STATS --- | |
if plot_id == "followers_count": # Uses follower_monthly_df | |
if not follower_monthly_df.empty and 'total_monthly_gains' in follower_monthly_df.columns and 'datetime_obj' in follower_monthly_df.columns and not follower_monthly_df['datetime_obj'].isnull().all(): | |
df_summary = follower_monthly_df[['datetime_obj', 'total_monthly_gains']].copy() | |
df_summary['datetime_obj'] = df_summary['datetime_obj'].dt.strftime('%Y-%m-%d') | |
df_summary.rename(columns={'datetime_obj': 'Date', 'total_monthly_gains': 'Total Monthly Gains'}, inplace=True) | |
summary_text = f"Follower Count (Total Monthly Gains):\n{df_summary.sort_values(by='Date').tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Follower count data (total monthly gains) is unavailable or incomplete for '{plot_label}'." | |
elif plot_id == "followers_growth_rate": # Uses follower_monthly_df | |
if not follower_monthly_df.empty and 'total_monthly_gains' in follower_monthly_df.columns and 'datetime_obj' in follower_monthly_df.columns and not follower_monthly_df['datetime_obj'].isnull().all(): | |
df_calc = follower_monthly_df.sort_values(by='datetime_obj').copy() | |
# Growth rate is calculated on the total monthly gains (which are changes, not cumulative counts) | |
# To calculate growth rate of followers, we'd need cumulative follower count. | |
# The plot logic also uses pct_change on the gains themselves. | |
# If 'total_monthly_gains' represents the *change* in followers, then pct_change on this is rate of change of gains. | |
# If it represents the *cumulative* followers at that point, then pct_change is follower growth rate. | |
# Assuming 'total_monthly_gains' is the *change* for the month, like the plot logic. | |
df_calc['total_monthly_gains'] = pd.to_numeric(df_calc['total_monthly_gains'], errors='coerce') | |
if len(df_calc) >= 2: | |
# Calculate cumulative sum to get follower count if 'total_monthly_gains' are indeed just gains | |
# If your 'total_monthly_gains' already IS the total follower count at end of month, remove next line | |
# For now, assuming it's GAINS, so we need cumulative for growth rate of total followers. | |
# However, the original plot logic applies pct_change directly to 'follower_gains_monthly'. | |
# Let's stick to pct_change on the gains/count column for consistency with plot. | |
# If 'total_monthly_gains' is the actual follower count for that month: | |
df_calc['growth_rate_monthly'] = df_calc['total_monthly_gains'].pct_change() * 100 | |
df_calc['growth_rate_monthly'] = df_calc['growth_rate_monthly'].round(2) | |
df_calc.replace([np.inf, -np.inf], np.nan, inplace=True) # Handle division by zero if a gain was 0 | |
df_summary = df_calc[['datetime_obj', 'growth_rate_monthly']].dropna().copy() | |
df_summary['datetime_obj'] = df_summary['datetime_obj'].dt.strftime('%Y-%m-%d') | |
df_summary.rename(columns={'datetime_obj': 'Date', 'growth_rate_monthly': 'Growth Rate (%)'}, inplace=True) | |
if not df_summary.empty: | |
summary_text = f"Follower Growth Rate (Monthly % based on Total Follower Count/Gains):\n{df_summary.sort_values(by='Date').tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Not enough data points or valid transitions to calculate follower growth rate for '{plot_label}'." | |
else: | |
summary_text = f"Not enough data points (need at least 2) to calculate follower growth rate for '{plot_label}'." | |
else: | |
summary_text = f"Follower growth rate data (total monthly gains) is unavailable or incomplete for '{plot_label}'." | |
elif plot_id in ["followers_by_location", "followers_by_role", "followers_by_industry", "followers_by_seniority"]: | |
demographic_type_map = { | |
"followers_by_location": "follower_geo", | |
"followers_by_role": "follower_function", | |
"followers_by_industry": "follower_industry", | |
"followers_by_seniority": "follower_seniority" | |
} | |
current_demographic_type = demographic_type_map.get(plot_id) | |
if not follower_demographics_df.empty and \ | |
follower_demographics_type_col in follower_demographics_df.columns and \ | |
follower_demographics_category_col in follower_demographics_df.columns and \ | |
'total_follower_count' in follower_demographics_df.columns: # Check for the calculated total | |
df_filtered_demographics = follower_demographics_df[ | |
follower_demographics_df[follower_demographics_type_col] == current_demographic_type | |
].copy() | |
if not df_filtered_demographics.empty: | |
df_summary = df_filtered_demographics.groupby(follower_demographics_category_col)['total_follower_count'].sum().reset_index() | |
df_summary.rename(columns={follower_demographics_category_col: 'Category', 'total_follower_count': 'Total Follower Count'}, inplace=True) | |
top_5 = df_summary.nlargest(5, 'Total Follower Count') | |
summary_text = f"Top 5 {plot_label} (Total Followers):\n{top_5.to_string(index=False)}" | |
else: | |
summary_text = f"No data available for demographic type '{current_demographic_type}' in '{plot_label}'." | |
else: | |
summary_text = f"Follower demographic data columns (including total_follower_count) are missing or incomplete for '{plot_label}'." | |
# --- POSTS STATS --- | |
elif plot_id == "engagement_rate": | |
if not posts_df.empty and 'engagement' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): | |
df_resampled = posts_df.set_index(date_col_posts)['engagement'].resample('W').mean().reset_index() | |
df_resampled['engagement'] = pd.to_numeric(df_resampled['engagement'], errors='coerce').round(2) | |
df_summary = df_resampled[[date_col_posts, 'engagement']].dropna().copy() | |
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') | |
summary_text = f"Engagement Rate Over Time (Weekly Avg %):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Engagement rate data is unavailable for '{plot_label}'." | |
elif plot_id == "reach_over_time": | |
if not posts_df.empty and 'reach' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): | |
df_resampled = posts_df.set_index(date_col_posts)['reach'].resample('W').sum().reset_index() | |
df_resampled['reach'] = pd.to_numeric(df_resampled['reach'], errors='coerce') | |
df_summary = df_resampled[[date_col_posts, 'reach']].dropna().copy() | |
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') | |
summary_text = f"Reach Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Reach data is unavailable for '{plot_label}'." | |
elif plot_id == "impressions_over_time": | |
if not posts_df.empty and 'impressionCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): | |
df_resampled = posts_df.set_index(date_col_posts)['impressionCount'].resample('W').sum().reset_index() | |
df_resampled['impressionCount'] = pd.to_numeric(df_resampled['impressionCount'], errors='coerce') | |
df_summary = df_resampled[[date_col_posts, 'impressionCount']].dropna().copy() | |
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') | |
df_summary.rename(columns={'impressionCount': 'Impressions'}, inplace=True) | |
summary_text = f"Impressions Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Impressions data is unavailable for '{plot_label}'." | |
elif plot_id == "likes_over_time": | |
if not posts_df.empty and 'likeCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): | |
df_resampled = posts_df.set_index(date_col_posts)['likeCount'].resample('W').sum().reset_index() | |
df_resampled['likeCount'] = pd.to_numeric(df_resampled['likeCount'], errors='coerce') | |
df_summary = df_resampled[[date_col_posts, 'likeCount']].dropna().copy() | |
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') | |
df_summary.rename(columns={'likeCount': 'Likes'}, inplace=True) | |
summary_text = f"Likes Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Likes data is unavailable for '{plot_label}'." | |
elif plot_id == "clicks_over_time": | |
if not posts_df.empty and 'clickCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): | |
df_resampled = posts_df.set_index(date_col_posts)['clickCount'].resample('W').sum().reset_index() | |
df_resampled['clickCount'] = pd.to_numeric(df_resampled['clickCount'], errors='coerce') | |
df_summary = df_resampled[[date_col_posts, 'clickCount']].dropna().copy() | |
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') | |
df_summary.rename(columns={'clickCount': 'Clicks'}, inplace=True) | |
summary_text = f"Clicks Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Clicks data is unavailable for '{plot_label}'." | |
elif plot_id == "shares_over_time": | |
if not posts_df.empty and 'shareCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): | |
df_resampled = posts_df.set_index(date_col_posts)['shareCount'].resample('W').sum().reset_index() | |
df_resampled['shareCount'] = pd.to_numeric(df_resampled['shareCount'], errors='coerce') | |
df_summary = df_resampled[[date_col_posts, 'shareCount']].dropna().copy() | |
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') | |
df_summary.rename(columns={'shareCount': 'Shares'}, inplace=True) | |
summary_text = f"Shares Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" | |
elif 'shareCount' not in posts_df.columns and not posts_df.empty : # Check if posts_df is not empty before assuming column is the only issue | |
summary_text = f"Shares data column ('shareCount') not found for '{plot_label}'." | |
else: | |
summary_text = f"Shares data is unavailable for '{plot_label}'." | |
elif plot_id == "comments_over_time": | |
if not posts_df.empty and 'commentCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): | |
df_resampled = posts_df.set_index(date_col_posts)['commentCount'].resample('W').sum().reset_index() | |
df_resampled['commentCount'] = pd.to_numeric(df_resampled['commentCount'], errors='coerce') | |
df_summary = df_resampled[[date_col_posts, 'commentCount']].dropna().copy() | |
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') | |
df_summary.rename(columns={'commentCount': 'Comments'}, inplace=True) | |
summary_text = f"Comments Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Comments data is unavailable for '{plot_label}'." | |
elif plot_id == "comments_sentiment": | |
comment_sentiment_col_posts = "sentiment" | |
if not posts_df.empty and comment_sentiment_col_posts in posts_df.columns: | |
sentiment_counts = posts_df[comment_sentiment_col_posts].value_counts().reset_index() | |
sentiment_counts.columns = ['Sentiment', 'Count'] | |
summary_text = f"Comments Sentiment Breakdown (Posts Data):\n{sentiment_counts.to_string(index=False)}" | |
else: | |
summary_text = f"Comment sentiment data ('{comment_sentiment_col_posts}') is unavailable for '{plot_label}'." | |
elif plot_id == "post_frequency_cs": | |
if not posts_df.empty and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): | |
post_counts_weekly = posts_df.set_index(date_col_posts).resample('W').size().reset_index(name='post_count') | |
post_counts_weekly.rename(columns={date_col_posts: 'Week', 'post_count': 'Posts'}, inplace=True) | |
post_counts_weekly['Week'] = post_counts_weekly['Week'].dt.strftime('%Y-%m-%d (Week of)') | |
summary_text = f"Post Frequency (Weekly):\n{post_counts_weekly.sort_values(by='Week').tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"Post frequency data is unavailable for '{plot_label}'." | |
elif plot_id == "content_format_breakdown_cs": | |
if not posts_df.empty and media_type_col_name in posts_df.columns: | |
format_counts = posts_df[media_type_col_name].value_counts().reset_index() | |
format_counts.columns = ['Format', 'Count'] | |
summary_text = f"Content Format Breakdown:\n{format_counts.nlargest(5, 'Count').to_string(index=False)}" | |
else: | |
summary_text = f"Content format data ('{media_type_col_name}') is unavailable for '{plot_label}'." | |
elif plot_id == "content_topic_breakdown_cs": | |
if not posts_df.empty and eb_labels_col_name in posts_df.columns: | |
try: | |
# Ensure the column is not all NaN before trying to check for lists or explode | |
if posts_df[eb_labels_col_name].notna().any(): | |
if posts_df[eb_labels_col_name].apply(lambda x: isinstance(x, list)).any(): | |
topic_counts = posts_df.explode(eb_labels_col_name)[eb_labels_col_name].value_counts().reset_index() | |
else: | |
topic_counts = posts_df[eb_labels_col_name].value_counts().reset_index() | |
topic_counts.columns = ['Topic', 'Count'] | |
summary_text = f"Content Topic Breakdown (Top 5):\n{topic_counts.nlargest(5, 'Count').to_string(index=False)}" | |
else: | |
summary_text = f"Content topic data ('{eb_labels_col_name}') contains no valid topics for '{plot_label}'." | |
except Exception as e_topic: | |
logging.warning(f"Could not process topic breakdown for '{eb_labels_col_name}': {e_topic}") | |
summary_text = f"Content topic data ('{eb_labels_col_name}') could not be processed for '{plot_label}'." | |
else: | |
summary_text = f"Content topic data ('{eb_labels_col_name}') is unavailable for '{plot_label}'." | |
# --- MENTIONS STATS --- | |
elif plot_id == "mention_analysis_volume": | |
if not mentions_df.empty and date_col_mentions in mentions_df.columns and not mentions_df[date_col_mentions].isnull().all(): | |
mentions_over_time = mentions_df.set_index(date_col_mentions).resample('W').size().reset_index(name='mention_count') | |
mentions_over_time.rename(columns={date_col_mentions: 'Week', 'mention_count': 'Mentions'}, inplace=True) | |
mentions_over_time['Week'] = mentions_over_time['Week'].dt.strftime('%Y-%m-%d (Week of)') | |
if not mentions_over_time.empty: | |
summary_text = f"Mentions Volume (Weekly):\n{mentions_over_time.sort_values(by='Week').tail(5).to_string(index=False)}" | |
else: | |
summary_text = f"No mention activity found for '{plot_label}' in the selected period." | |
else: | |
summary_text = f"Mentions volume data is unavailable for '{plot_label}'." | |
elif plot_id == "mention_analysis_sentiment": | |
if not mentions_df.empty and mentions_sentiment_col in mentions_df.columns: | |
sentiment_counts = mentions_df[mentions_sentiment_col].value_counts().reset_index() | |
sentiment_counts.columns = ['Sentiment', 'Count'] | |
summary_text = f"Mentions Sentiment Breakdown:\n{sentiment_counts.to_string(index=False)}" | |
else: | |
summary_text = f"Mention sentiment data ('{mentions_sentiment_col}') is unavailable for '{plot_label}'." | |
data_summaries[plot_id] = summary_text | |
except KeyError as e: | |
logging.warning(f"KeyError generating summary for {plot_id} ('{plot_label}'): {e}. Using default summary.") | |
data_summaries[plot_id] = f"Data summary generation error for '{plot_label}' (missing column: {e})." | |
except Exception as e: | |
logging.error(f"Error generating summary for {plot_id} ('{plot_label}'): {e}", exc_info=True) | |
data_summaries[plot_id] = f"Error generating data summary for '{plot_label}'." | |
return data_summaries | |
# --- Analytics Tab: Plot Figure Generation Function --- | |
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs): | |
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") | |
num_expected_plots = 19 # Ensure this matches the number of plots generated | |
plot_data_summaries_for_chatbot = {} # Initialize dict for chatbot summaries | |
if not token_state_value or not token_state_value.get("token"): | |
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi." | |
logging.warning(message) | |
placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)] | |
# For each plot_config, add a default "no data" summary | |
for p_cfg in current_plot_configs: | |
plot_data_summaries_for_chatbot[p_cfg["id"]] = "Accesso negato, nessun dato per il chatbot." | |
return [message] + placeholder_figs + [plot_data_summaries_for_chatbot] | |
try: | |
(filtered_merged_posts_df, | |
filtered_mentions_df, | |
date_filtered_follower_stats_df, # For time-based follower plots | |
raw_follower_stats_df, # For demographic follower plots | |
start_dt_for_msg, end_dt_for_msg) = \ | |
prepare_filtered_analytics_data( | |
token_state_value, date_filter_option, custom_start_date, custom_end_date | |
) | |
# Generate data summaries for chatbot AFTER data preparation | |
plot_data_summaries_for_chatbot = generate_chatbot_data_summaries( | |
current_plot_configs, # Pass the plot_configs list | |
filtered_merged_posts_df, | |
filtered_mentions_df, | |
date_filtered_follower_stats_df, | |
raw_follower_stats_df, | |
token_state_value | |
) | |
except Exception as e: | |
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}" | |
logging.error(error_msg, exc_info=True) | |
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)] | |
for p_cfg in current_plot_configs: | |
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore preparazione dati: {e}" | |
return [error_msg] + placeholder_figs + [plot_data_summaries_for_chatbot] | |
date_column_posts = token_state_value.get("config_date_col_posts", "published_at") | |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date") | |
media_type_col_name = token_state_value.get("config_media_type_col", "media_type") | |
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label") | |
plot_figs = [] # Initialize list to hold plot figures | |
plot_titles_for_errors = [p_cfg["label"] for p_cfg in current_plot_configs] | |
try: | |
# Dinamiche dei Follower (2 plots) | |
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) | |
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) # Assuming this uses 'follower_gains_monthly' to calculate rate | |
# Demografia Follower (4 plots) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità")) | |
# Approfondimenti Performance Post (4 plots) | |
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) # Ensure 'impressions_sum' or equivalent is used by this func | |
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
# Engagement Dettagliato Post nel Tempo (4 plots) | |
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) # Make sure 'comment_sentiment' exists | |
# Analisi Strategia Contenuti (3 plots) | |
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name)) | |
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name)) | |
# Analisi Menzioni (Dettaglio) (2 plots) | |
plot_figs.append(generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)) | |
plot_figs.append(generate_mention_sentiment_plot(filtered_mentions_df)) # Make sure this function handles empty/malformed df | |
if len(plot_figs) != num_expected_plots: | |
logging.warning(f"Mismatch in generated plots. Expected {num_expected_plots}, got {len(plot_figs)}. This will cause UI update issues.") | |
while len(plot_figs) < num_expected_plots: | |
plot_figs.append(create_placeholder_plot(title="Grafico Non Generato", message="Logica di generazione incompleta.")) | |
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}" | |
if date_filter_option == "Intervallo Personalizzato": | |
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi" | |
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi" | |
message += f" (Da: {s_display} A: {e_display})" | |
final_plot_figs = [] | |
for i, p_fig_candidate in enumerate(plot_figs): | |
if p_fig_candidate is not None and not isinstance(p_fig_candidate, str): # Basic check for a plot object | |
final_plot_figs.append(p_fig_candidate) | |
else: | |
err_title = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}" | |
logging.warning(f"Plot {err_title} (index {i}) non è una figura valida: {p_fig_candidate}. Uso placeholder.") | |
final_plot_figs.append(create_placeholder_plot(title=f"Errore: {err_title}", message="Impossibile generare figura.")) | |
return [message] + final_plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot] | |
except (KeyError, ValueError) as e_plot_data: | |
logging.error(f"Errore dati durante la generazione di un grafico specifico: {e_plot_data}", exc_info=True) | |
error_msg_display = f"Errore dati in un grafico: {str(e_plot_data)[:100]}" | |
num_already_generated = len(plot_figs) | |
for i in range(num_already_generated, num_expected_plots): | |
err_title_fill = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}" | |
plot_figs.append(create_placeholder_plot(title=f"Errore Dati: {err_title_fill}", message=f"Precedente errore: {str(e_plot_data)[:50]}")) | |
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error | |
if p_cfg["id"] not in plot_data_summaries_for_chatbot: | |
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore dati grafico: {e_plot_data}" | |
return [error_msg_display] + plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot] | |
except Exception as e_general: | |
error_msg = f"❌ Errore generale durante la generazione dei grafici: {e_general}" | |
logging.error(error_msg, exc_info=True) | |
placeholder_figs_general = [create_placeholder_plot(title=plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}", message=str(e_general)) for i in range(num_expected_plots)] | |
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error | |
if p_cfg["id"] not in plot_data_summaries_for_chatbot: | |
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore generale grafici: {e_general}" | |
return [error_msg] + placeholder_figs_general + [plot_data_summaries_for_chatbot] | |
# --- Gradio UI Blocks --- | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), | |
title="LinkedIn Organization Dashboard") as app: | |
token_state = gr.State(value={ | |
"token": None, "client_id": None, "org_urn": None, | |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(), | |
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), | |
"fetch_count_for_api": 0, "url_user_token_temp_storage": None, | |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date", | |
"config_date_col_followers": "date", "config_media_type_col": "media_type", | |
"config_eb_labels_col": "li_eb_label" | |
}) | |
chat_histories_st = gr.State({}) | |
current_chat_plot_id_st = gr.State(None) | |
plot_data_for_chatbot_st = gr.State({}) # NEW: Store data summaries for chatbot | |
gr.Markdown("# 🚀 LinkedIn Organization Dashboard") | |
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False) | |
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...") | |
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False) | |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) | |
def initial_load_sequence(url_token, org_urn_val, current_state): | |
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) | |
dashboard_content = display_main_dashboard(new_state) | |
return status_msg, new_state, btn_update, dashboard_content | |
with gr.Tabs() as tabs: | |
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"): | |
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.") | |
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False) | |
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>") | |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>") | |
org_urn_display.change( | |
fn=initial_load_sequence, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], | |
show_progress="full" | |
) | |
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"): | |
gr.Markdown("## 📈 Analisi Performance LinkedIn") | |
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.") | |
analytics_status_md = gr.Markdown("Stato analisi...") | |
with gr.Row(): | |
date_filter_selector = gr.Radio( | |
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"], | |
label="Seleziona Intervallo Date", value="Sempre", scale=3 | |
) | |
with gr.Column(scale=2): | |
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime") # Use gr.DateTime | |
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime") # Use gr.DateTime | |
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary") | |
def toggle_custom_date_pickers(selection): | |
is_custom = selection == "Intervallo Personalizzato" | |
return gr.update(visible=is_custom), gr.update(visible=is_custom) | |
date_filter_selector.change( | |
fn=toggle_custom_date_pickers, | |
inputs=[date_filter_selector], | |
outputs=[custom_start_date_picker, custom_end_date_picker] | |
) | |
plot_configs = [ | |
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"}, | |
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"}, | |
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"}, | |
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"}, | |
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"}, | |
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"}, | |
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"}, | |
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"}, | |
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"}, | |
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"}, | |
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"}, | |
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"}, | |
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"}, | |
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"}, | |
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"}, | |
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"}, | |
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"}, | |
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"}, | |
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"} | |
] | |
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi." | |
active_panel_action_state = gr.State(None) | |
explored_plot_id_state = gr.State(None) | |
plot_ui_objects = {} | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=8) as plots_area_col: | |
plot_ui_objects = build_analytics_tab_plot_area(plot_configs) | |
with gr.Column(scale=4, visible=False) as global_actions_column_ui: | |
gr.Markdown("### 💡 Azioni Contestuali Grafico") | |
insights_chatbot_ui = gr.Chatbot( | |
label="Chat Insights", type="messages", height=450, | |
bubble_full_width=False, visible=False, show_label=False, | |
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!" | |
) | |
insights_chat_input_ui = gr.Textbox( | |
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...", | |
lines=2, visible=False, show_label=False | |
) | |
with gr.Row(visible=False) as insights_suggestions_row_ui: | |
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50) | |
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50) | |
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50) | |
formula_display_markdown_ui = gr.Markdown( | |
"I dettagli sulla formula/metodologia appariranno qui.", visible=False | |
) | |
async def handle_panel_action( | |
plot_id_clicked: str, | |
action_type: str, | |
current_active_action_from_state: dict, | |
current_chat_histories: dict, | |
current_chat_plot_id: str, | |
current_plot_data_for_chatbot: dict # NEW: data summaries | |
): | |
logging.info(f"Azione '{action_type}' per grafico: {plot_id_clicked}. Attualmente attivo: {current_active_action_from_state}") | |
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None) | |
if not clicked_plot_config: | |
logging.error(f"Configurazione non trovata per plot_id {plot_id_clicked}") | |
num_button_updates = 2 * len(plot_configs) # insights, formula buttons | |
error_updates = [gr.update(visible=False)] * 7 # action_col, chatbot, input, suggestions_row, 3x sugg_btn | |
error_updates.append(gr.update(visible=False, value="")) # formula_md (visibility and value) | |
error_updates.extend([current_active_action_from_state, current_chat_plot_id, current_chat_histories]) | |
error_updates.extend([gr.update()] * num_button_updates) | |
return error_updates | |
clicked_plot_label = clicked_plot_config["label"] | |
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type} | |
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state | |
new_active_action_state_to_set = None | |
action_col_visible_update = gr.update(visible=True) | |
insights_chatbot_visible_update = gr.update(visible=False) | |
insights_chat_input_visible_update = gr.update(visible=False) | |
insights_suggestions_row_visible_update = gr.update(visible=False) | |
formula_display_visible_update = gr.update(visible=False) | |
chatbot_content_update = gr.update() # No change by default | |
suggestion_1_update = gr.update() | |
suggestion_2_update = gr.update() | |
suggestion_3_update = gr.update() | |
new_current_chat_plot_id = current_chat_plot_id | |
updated_chat_histories = current_chat_histories | |
formula_content_update = gr.update() | |
if is_toggling_off: | |
new_active_action_state_to_set = None | |
action_col_visible_update = gr.update(visible=False) | |
new_current_chat_plot_id = None | |
logging.info(f"Chiusura pannello {action_type} per {plot_id_clicked}") | |
else: | |
new_active_action_state_to_set = hypothetical_new_active_state | |
if action_type == "insights": | |
insights_chatbot_visible_update = gr.update(visible=True) | |
insights_chat_input_visible_update = gr.update(visible=True) | |
insights_suggestions_row_visible_update = gr.update(visible=True) | |
new_current_chat_plot_id = plot_id_clicked | |
chat_history_for_this_plot = current_chat_histories.get(plot_id_clicked, []) | |
plot_specific_data_summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"Nessun sommario dati specifico disponibile per '{clicked_plot_label}'.") | |
if not chat_history_for_this_plot: | |
initial_llm_prompt, suggestions = get_initial_insight_prompt_and_suggestions( | |
plot_id_clicked, | |
clicked_plot_label, | |
plot_specific_data_summary | |
) | |
# History for LLM's first turn: the system's prompt as a user message | |
history_for_llm_first_turn = [{"role": "user", "content": initial_llm_prompt}] | |
logging.info(f"Generating initial LLM insight for {plot_id_clicked}...") | |
initial_bot_response_text = await generate_llm_response( | |
user_message=initial_llm_prompt, # For context/logging in handler | |
plot_id=plot_id_clicked, | |
plot_label=clicked_plot_label, | |
chat_history_for_plot=history_for_llm_first_turn, | |
plot_data_summary=plot_specific_data_summary | |
) | |
logging.info(f"LLM initial insight received for {plot_id_clicked}.") | |
# History for Gradio display starts with the assistant's response | |
chat_history_for_this_plot = [{"role": "assistant", "content": initial_bot_response_text}] | |
updated_chat_histories = current_chat_histories.copy() | |
updated_chat_histories[plot_id_clicked] = chat_history_for_this_plot | |
else: # History exists, get fresh suggestions | |
_, suggestions = get_initial_insight_prompt_and_suggestions( | |
plot_id_clicked, | |
clicked_plot_label, | |
plot_specific_data_summary | |
) | |
chatbot_content_update = gr.update(value=chat_history_for_this_plot) | |
suggestion_1_update = gr.update(value=suggestions[0]) | |
suggestion_2_update = gr.update(value=suggestions[1]) | |
suggestion_3_update = gr.update(value=suggestions[2]) | |
logging.info(f"Apertura pannello CHAT per {plot_id_clicked} ('{clicked_plot_label}')") | |
elif action_type == "formula": | |
formula_display_visible_update = gr.update(visible=True) | |
formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked) | |
formula_text = f"**Formula/Metodologia per: {clicked_plot_label}**\n\nID Grafico: `{plot_id_clicked}`.\n\n" | |
if formula_key and formula_key in PLOT_FORMULAS: | |
formula_data = PLOT_FORMULAS[formula_key] | |
formula_text += f"### {formula_data['title']}\n\n" | |
formula_text += f"**Descrizione:**\n{formula_data['description']}\n\n" | |
formula_text += "**Come viene calcolato:**\n" | |
for step in formula_data['calculation_steps']: | |
formula_text += f"- {step}\n" | |
else: | |
formula_text += "(Nessuna informazione dettagliata sulla formula trovata per questo ID grafico in `formulas.py`)" | |
formula_content_update = gr.update(value=formula_text) | |
new_current_chat_plot_id = None | |
logging.info(f"Apertura pannello FORMULA per {plot_id_clicked} (mappato a {formula_key})") | |
all_button_icon_updates = [] | |
for cfg_item in plot_configs: | |
p_id_iter = cfg_item["id"] | |
# Update insights button icon | |
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}: | |
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON)) | |
else: | |
all_button_icon_updates.append(gr.update(value=BOMB_ICON)) | |
# Update formula button icon | |
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}: | |
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON)) | |
else: | |
all_button_icon_updates.append(gr.update(value=FORMULA_ICON)) | |
final_updates = [ | |
action_col_visible_update, | |
insights_chatbot_visible_update, chatbot_content_update, | |
insights_chat_input_visible_update, | |
insights_suggestions_row_visible_update, suggestion_1_update, suggestion_2_update, suggestion_3_update, | |
formula_display_visible_update, formula_content_update, | |
new_active_action_state_to_set, | |
new_current_chat_plot_id, | |
updated_chat_histories | |
] + all_button_icon_updates | |
return final_updates | |
async def handle_chat_message_submission( | |
user_message: str, | |
current_plot_id: str, | |
chat_histories: dict, | |
current_plot_data_for_chatbot: dict # NEW: data summaries | |
): | |
if not current_plot_id or not user_message.strip(): | |
history_for_plot = chat_histories.get(current_plot_id, []) | |
# Yield current state if no action needed | |
yield history_for_plot, gr.update(value=""), chat_histories # Clear input, return current history | |
return | |
plot_config = next((p for p in plot_configs if p["id"] == current_plot_id), None) | |
plot_label = plot_config["label"] if plot_config else "Grafico Selezionato" | |
# Retrieve the specific data summary for the current plot | |
plot_specific_data_summary = current_plot_data_for_chatbot.get(current_plot_id, f"Nessun sommario dati specifico disponibile per '{plot_label}'.") | |
history_for_plot = chat_histories.get(current_plot_id, []).copy() | |
history_for_plot.append({"role": "user", "content": user_message}) | |
# Update UI immediately with user message | |
yield history_for_plot, gr.update(value=""), chat_histories # Clear input | |
# Pass the data summary to the LLM along with the history | |
bot_response_text = await generate_llm_response( | |
user_message, | |
current_plot_id, | |
plot_label, | |
history_for_plot, # This history now includes the user message | |
plot_specific_data_summary # Explicitly pass for this turn if needed by LLM handler logic | |
) | |
history_for_plot.append({"role": "assistant", "content": bot_response_text}) | |
updated_chat_histories = chat_histories.copy() | |
updated_chat_histories[current_plot_id] = history_for_plot | |
yield history_for_plot, "", updated_chat_histories | |
async def handle_suggested_question_click( | |
suggestion_text: str, | |
current_plot_id: str, | |
chat_histories: dict, | |
current_plot_data_for_chatbot: dict # NEW: data summaries | |
): | |
if not current_plot_id or not suggestion_text.strip(): | |
history_for_plot = chat_histories.get(current_plot_id, []) | |
yield history_for_plot, gr.update(value=""), chat_histories | |
return | |
# This is essentially the same as submitting a message, so reuse logic | |
# The suggestion_text becomes the user_message | |
async for update in handle_chat_message_submission( | |
suggestion_text, | |
current_plot_id, | |
chat_histories, | |
current_plot_data_for_chatbot | |
): | |
yield update | |
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state): | |
logging.info(f"Click su Esplora per: {plot_id_clicked}. Attualmente esplorato da stato: {current_explored_plot_id_from_state}") | |
if not plot_ui_objects: | |
logging.error("plot_ui_objects non popolato durante handle_explore_click.") | |
updates_for_missing_ui = [current_explored_plot_id_from_state] | |
for _ in plot_configs: # panel_component, explore_button | |
updates_for_missing_ui.extend([gr.update(), gr.update()]) | |
return updates_for_missing_ui | |
new_explored_id_to_set = None | |
is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state) | |
if is_toggling_off: | |
new_explored_id_to_set = None | |
logging.info(f"Interruzione esplorazione grafico: {plot_id_clicked}") | |
else: | |
new_explored_id_to_set = plot_id_clicked | |
logging.info(f"Esplorazione grafico: {plot_id_clicked}") | |
panel_and_button_updates = [] | |
for cfg in plot_configs: | |
p_id = cfg["id"] | |
if p_id in plot_ui_objects: | |
panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set) | |
panel_and_button_updates.append(gr.update(visible=panel_visible)) | |
if p_id == new_explored_id_to_set: | |
panel_and_button_updates.append(gr.update(value=ACTIVE_ICON)) | |
else: | |
panel_and_button_updates.append(gr.update(value=EXPLORE_ICON)) | |
else: | |
panel_and_button_updates.extend([gr.update(), gr.update()]) | |
final_updates = [new_explored_id_to_set] + panel_and_button_updates | |
return final_updates | |
# Outputs for panel actions | |
action_panel_outputs_list = [ | |
global_actions_column_ui, | |
insights_chatbot_ui, insights_chatbot_ui, # Target chatbot UI for visibility and value | |
insights_chat_input_ui, | |
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn, | |
formula_display_markdown_ui, formula_display_markdown_ui, # Target markdown for visibility and value | |
active_panel_action_state, | |
current_chat_plot_id_st, | |
chat_histories_st | |
] | |
for cfg_item_action in plot_configs: | |
pid_action = cfg_item_action["id"] | |
if pid_action in plot_ui_objects: | |
action_panel_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"]) | |
action_panel_outputs_list.append(plot_ui_objects[pid_action]["formula_button"]) | |
else: | |
action_panel_outputs_list.extend([gr.update(), gr.update()]) # Use gr.update() as placeholder | |
# Outputs for explore actions | |
explore_buttons_outputs_list = [explored_plot_id_state] | |
for cfg_item_explore in plot_configs: | |
pid_explore = cfg_item_explore["id"] | |
if pid_explore in plot_ui_objects: | |
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"]) | |
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"]) | |
else: | |
explore_buttons_outputs_list.extend([gr.update(), gr.update()]) | |
# Inputs for panel actions | |
action_click_inputs = [ | |
active_panel_action_state, | |
chat_histories_st, | |
current_chat_plot_id_st, | |
plot_data_for_chatbot_st # NEW: pass data summaries state | |
] | |
# Inputs for explore actions | |
explore_click_inputs = [explored_plot_id_state] | |
def create_panel_action_handler(p_id, action_type_str): | |
async def _handler(current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries): # Add summaries | |
logging.debug(f"Entering _handler for plot_id: {p_id}, action: {action_type_str}") | |
result = await handle_panel_action(p_id, action_type_str, current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries) # Pass summaries | |
logging.debug(f"_handler for plot_id: {p_id}, action: {action_type_str} completed.") | |
return result | |
return _handler | |
for config_item in plot_configs: | |
plot_id = config_item["id"] | |
if plot_id in plot_ui_objects: | |
ui_obj = plot_ui_objects[plot_id] | |
ui_obj["bomb_button"].click( | |
fn=create_panel_action_handler(plot_id, "insights"), | |
inputs=action_click_inputs, | |
outputs=action_panel_outputs_list, | |
api_name=f"action_insights_{plot_id}" | |
) | |
ui_obj["formula_button"].click( | |
fn=create_panel_action_handler(plot_id, "formula"), | |
inputs=action_click_inputs, | |
outputs=action_panel_outputs_list, | |
api_name=f"action_formula_{plot_id}" | |
) | |
ui_obj["explore_button"].click( | |
fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val), | |
inputs=explore_click_inputs, | |
outputs=explore_buttons_outputs_list, | |
api_name=f"action_explore_{plot_id}" | |
) | |
else: | |
logging.warning(f"Oggetto UI per plot_id '{plot_id}' non trovato durante il tentativo di associare i gestori di click.") | |
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st] | |
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state | |
insights_chat_input_ui.submit( | |
fn=handle_chat_message_submission, | |
inputs=chat_submission_inputs, | |
outputs=chat_submission_outputs, | |
api_name="submit_chat_message" | |
) | |
suggestion_click_inputs = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state | |
insights_suggestion_1_btn.click( | |
fn=handle_suggested_question_click, | |
inputs=[insights_suggestion_1_btn] + suggestion_click_inputs, # Pass button value as first arg | |
outputs=chat_submission_outputs, | |
api_name="click_suggestion_1" | |
) | |
insights_suggestion_2_btn.click( | |
fn=handle_suggested_question_click, | |
inputs=[insights_suggestion_2_btn] + suggestion_click_inputs, | |
outputs=chat_submission_outputs, | |
api_name="click_suggestion_2" | |
) | |
insights_suggestion_3_btn.click( | |
fn=handle_suggested_question_click, | |
inputs=[insights_suggestion_3_btn] + suggestion_click_inputs, | |
outputs=chat_submission_outputs, | |
api_name="click_suggestion_3" | |
) | |
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val, current_chat_histories): | |
logging.info("Aggiornamento di tutti gli elementi UI delle analisi e reset delle azioni/chat.") | |
# Pass plot_configs to the update function so it can be used by generate_chatbot_data_summaries | |
plot_generation_results = update_analytics_plots_figures( | |
current_token_state, date_filter_val, custom_start_val, custom_end_val, plot_configs | |
) | |
status_message_update = plot_generation_results[0] | |
generated_plot_figures = plot_generation_results[1:-1] # All items except first (status) and last (summaries) | |
new_plot_data_summaries = plot_generation_results[-1] # Last item is the summaries dict | |
all_updates = [status_message_update] | |
for i in range(len(plot_configs)): | |
if i < len(generated_plot_figures): | |
all_updates.append(generated_plot_figures[i]) | |
else: | |
all_updates.append(create_placeholder_plot("Errore Figura", f"Figura mancante per grafico {plot_configs[i]['id']}")) | |
all_updates.extend([ | |
gr.update(visible=False), # global_actions_column_ui | |
gr.update(value=[], visible=False), # insights_chatbot_ui (value & visibility) | |
gr.update(value="", visible=False), # insights_chat_input_ui (value & visibility) | |
gr.update(visible=False), # insights_suggestions_row_ui | |
gr.update(value="Suggerimento 1"), # insights_suggestion_1_btn (reset value, visibility handled by row) | |
gr.update(value="Suggerimento 2"), # insights_suggestion_2_btn | |
gr.update(value="Suggerimento 3"), # insights_suggestion_3_btn | |
gr.update(value="I dettagli sulla formula/metodologia appariranno qui.", visible=False), # formula_display_markdown_ui | |
None, # active_panel_action_state | |
None, # current_chat_plot_id_st | |
{}, # chat_histories_st (reset chat histories on filter change) | |
new_plot_data_summaries # NEW: plot_data_for_chatbot_st | |
]) | |
for cfg in plot_configs: | |
pid = cfg["id"] | |
if pid in plot_ui_objects: | |
all_updates.append(gr.update(value=BOMB_ICON)) | |
all_updates.append(gr.update(value=FORMULA_ICON)) | |
all_updates.append(gr.update(value=EXPLORE_ICON)) | |
all_updates.append(gr.update(visible=True)) # panel_component visibility | |
else: | |
all_updates.extend([gr.update(), gr.update(), gr.update(), gr.update()]) | |
all_updates.append(None) # explored_plot_id_state | |
logging.info(f"Preparati {len(all_updates)} aggiornamenti per il refresh delle analisi.") | |
return all_updates | |
apply_filter_and_sync_outputs_list = [analytics_status_md] | |
for config_item_filter_sync in plot_configs: | |
pid_filter_sync = config_item_filter_sync["id"] | |
if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]: | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"]) | |
else: | |
apply_filter_and_sync_outputs_list.append(gr.update()) | |
apply_filter_and_sync_outputs_list.extend([ | |
global_actions_column_ui, # Reset visibility | |
insights_chatbot_ui, # Reset content & visibility | |
insights_chat_input_ui, # Reset content & visibility | |
insights_suggestions_row_ui, # Reset visibility | |
insights_suggestion_1_btn, # Reset text & visibility | |
insights_suggestion_2_btn, | |
insights_suggestion_3_btn, | |
formula_display_markdown_ui, # Reset content & visibility | |
active_panel_action_state, # Reset state | |
current_chat_plot_id_st, # Reset state | |
chat_histories_st, # Preserve or reset state (resetting via refresh_all_analytics_ui_elements) | |
plot_data_for_chatbot_st # NEW: Update this state | |
]) | |
for cfg_filter_sync_btns in plot_configs: | |
pid_filter_sync_btns = cfg_filter_sync_btns["id"] | |
if pid_filter_sync_btns in plot_ui_objects: | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"]) | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"]) | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"]) | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"]) | |
else: | |
apply_filter_and_sync_outputs_list.extend([gr.update(), gr.update(), gr.update(), gr.update()]) | |
apply_filter_and_sync_outputs_list.append(explored_plot_id_state) # Reset state | |
logging.info(f"Output totali definiti per apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}") | |
apply_filter_btn.click( | |
fn=refresh_all_analytics_ui_elements, | |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st], | |
outputs=apply_filter_and_sync_outputs_list, | |
show_progress="full" | |
) | |
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"): | |
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary") | |
mentions_html = gr.HTML("Dati menzioni...") | |
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni") | |
refresh_mentions_display_btn.click( | |
fn=run_mentions_tab_display, inputs=[token_state], | |
outputs=[mentions_html, mentions_sentiment_dist_plot], | |
show_progress="full" | |
) | |
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"): | |
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary") | |
follower_stats_html = gr.HTML("Statistiche follower...") | |
with gr.Row(): | |
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower") | |
with gr.Row(): | |
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)") | |
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)") | |
refresh_follower_stats_btn.click( | |
fn=run_follower_stats_tab_display, inputs=[token_state], | |
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], | |
show_progress="full" | |
) | |
sync_event_part1 = sync_data_btn.click( | |
fn=sync_all_linkedin_data_orchestrator, | |
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full" | |
) | |
sync_event_part2 = sync_event_part1.then( | |
fn=process_and_store_bubble_token, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, sync_data_btn], show_progress=False | |
) | |
sync_event_part3 = sync_event_part2.then( | |
fn=display_main_dashboard, | |
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False | |
) | |
sync_event_final = sync_event_part3.then( | |
fn=refresh_all_analytics_ui_elements, # This will now also update chatbot data summaries | |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st], | |
outputs=apply_filter_and_sync_outputs_list, | |
show_progress="full" | |
) | |
if __name__ == "__main__": | |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): | |
logging.warning(f"ATTENZIONE: Variabile d'ambiente '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.") | |
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \ | |
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \ | |
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR): | |
logging.warning("ATTENZIONE: Variabili d'ambiente Bubble non completamente impostate.") | |
try: | |
logging.info(f"Versione Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}") | |
except ImportError: | |
logging.warning("Matplotlib non trovato direttamente, ma potrebbe essere usato dai generatori di grafici.") | |
app.launch(server_name="0.0.0.0", server_port=7860, debug=True) |