Spaces:
Running
Running
File size: 77,504 Bytes
abb0fcc b560569 575b933 b0464a9 87a87e7 791c130 266ae82 8673558 63031db f7fc39b 575b933 266ae82 575b933 2601f1c 575b933 266ae82 2601f1c 9d99925 dc88746 3b4dccb d33040c 3b4dccb 8673558 deb2291 266ae82 deb2291 c6716b6 3b4dccb 2601f1c abb0fcc 2601f1c b0464a9 2a3b22e 3b4dccb 2a3b22e eb46c40 d33040c eb46c40 2601f1c eb46c40 092a033 63031db 092a033 63031db 092a033 abb0fcc 63031db abb0fcc 63031db 092a033 63031db 092a033 63031db 092a033 63031db 092a033 63031db abb0fcc 63031db 092a033 63031db 092a033 63031db 092a033 6a8e128 092a033 266ae82 dc88746 092a033 791c130 d33040c 791c130 d33040c 092a033 575b933 2601f1c dc88746 092a033 3b4dccb 348bc84 791c130 092a033 791c130 d33040c 791c130 d33040c 092a033 2601f1c 791c130 266ae82 19ea45c 2601f1c dc88746 092a033 dc88746 791c130 dc88746 abb0fcc dc88746 abb0fcc dc88746 092a033 dc88746 092a033 dc88746 092a033 dc88746 d33040c 365263e d33040c 2601f1c 266ae82 dc88746 c6716b6 dc88746 eb46c40 092a033 dc88746 092a033 791c130 dc88746 791c130 dc88746 092a033 abb0fcc 092a033 a342a6b b0464a9 2a3b22e adb3bbe abb0fcc 67742c4 a342a6b 6a8e128 2601f1c 67742c4 2601f1c 092a033 adb3bbe a342a6b d33040c 2601f1c a342a6b 575b933 0612e1d 4ad44b9 266ae82 0612e1d adb3bbe 791c130 d33040c 2601f1c 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 8673558 d33040c 2601f1c d33040c 2601f1c 8673558 791c130 d33040c 791c130 365263e 092a033 8673558 d33040c 791c130 d33040c 3b902c0 791c130 2601f1c 266ae82 d33040c 266ae82 d33040c 6a8e128 365263e 2601f1c 365263e ddd95f0 8673558 6a8e128 2601f1c 365263e 2601f1c 998bc4b 2601f1c 365263e 092a033 2601f1c 092a033 abb0fcc 998bc4b c205383 2601f1c 266ae82 8673558 ddd95f0 8673558 2601f1c abb0fcc 2601f1c 365263e 2601f1c ddd95f0 eb46c40 2601f1c 365263e d33040c eb46c40 8673558 ddd95f0 2601f1c 092a033 365263e abb0fcc 092a033 abb0fcc 092a033 abb0fcc 2601f1c abb0fcc 092a033 abb0fcc 092a033 2601f1c ddd95f0 2601f1c eb46c40 2601f1c eb46c40 2601f1c eb46c40 2601f1c eb46c40 2601f1c 365263e 2601f1c 8673558 092a033 2601f1c eb46c40 2601f1c 092a033 2601f1c ddd95f0 2601f1c 365263e abb0fcc 2601f1c ddd95f0 998bc4b ddd95f0 2601f1c 365263e 092a033 2601f1c 092a033 365263e 2601f1c 092a033 2601f1c 092a033 abb0fcc 092a033 2601f1c 365263e 2601f1c 092a033 2601f1c 365263e 092a033 2601f1c 092a033 365263e 2601f1c 092a033 2601f1c 8673558 d33040c eb46c40 d33040c 2601f1c 092a033 365263e 2601f1c 8673558 2601f1c ddd95f0 eb46c40 d33040c ddd95f0 eb46c40 d33040c 092a033 8673558 ddd95f0 8673558 365263e 2601f1c 365263e 8673558 eb46c40 8673558 365263e 8673558 092a033 365263e ddd95f0 2601f1c 092a033 2601f1c 365263e 092a033 365263e 092a033 2601f1c ddd95f0 365263e 8673558 2601f1c 365263e abb0fcc 8673558 092a033 eb46c40 8673558 eb46c40 365263e abb0fcc ddd95f0 092a033 2601f1c 092a033 2601f1c 092a033 eb46c40 8673558 dc88746 092a033 dc88746 092a033 dc88746 092a033 998bc4b ddd95f0 eb46c40 ddd95f0 998bc4b ddd95f0 dc88746 365263e 2601f1c ddd95f0 dc88746 8673558 2601f1c ddd95f0 8673558 ddd95f0 8673558 d33040c 2601f1c 092a033 2601f1c 092a033 2601f1c 092a033 2601f1c 092a033 365263e 2601f1c 092a033 2601f1c 092a033 2601f1c 8673558 2601f1c 092a033 266ae82 092a033 266ae82 8673558 092a033 2601f1c 365263e 2601f1c d33040c 8673558 365263e d33040c ddd95f0 2601f1c 092a033 abb0fcc 092a033 abb0fcc 092a033 abb0fcc 092a033 2601f1c d33040c ddd95f0 092a033 365263e abb0fcc 365263e abb0fcc 6a8e128 092a033 2601f1c dc88746 266ae82 365263e 2601f1c 8673558 eb46c40 abb0fcc 8673558 abb0fcc 092a033 abb0fcc ddd95f0 2601f1c 8673558 365263e eb46c40 abb0fcc 2601f1c 092a033 2601f1c 6a8e128 791c130 266ae82 2601f1c eb46c40 a342a6b adb3bbe 06d22e5 d33040c 4ad44b9 eb46c40 a342a6b 575b933 d33040c 365263e d33040c a342a6b d33040c 2601f1c a342a6b 266ae82 a342a6b 538b42b 2601f1c 266ae82 ddd95f0 266ae82 365263e 8673558 365263e 266ae82 365263e ddd95f0 266ae82 092a033 2601f1c 365263e 2601f1c 266ae82 adb3bbe 575b933 d33040c 575b933 d33040c 2601f1c a342a6b d33040c 365263e 092a033 2601f1c abb0fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
# app.py
# (Showing relevant parts that need modification)
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime, timedelta # Added timedelta
import numpy as np
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area,
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_data_processing import prepare_filtered_analytics_data # This is key for data structure
from analytics_plot_generator import (
generate_posts_activity_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot,
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
from formulas import PLOT_FORMULAS
# --- NEW CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END NEW CHATBOT MODULE IMPORTS ---
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# Mapping from plot_configs IDs to PLOT_FORMULAS keys
PLOT_ID_TO_FORMULA_KEY_MAP = {
"posts_activity": "posts_activity",
"mentions_activity": "mentions_activity",
"mention_sentiment": "mention_sentiment",
"followers_count": "followers_count_over_time",
"followers_growth_rate": "followers_growth_rate",
"followers_by_location": "followers_by_demographics",
"followers_by_role": "followers_by_demographics",
"followers_by_industry": "followers_by_demographics",
"followers_by_seniority": "followers_by_demographics",
"engagement_rate": "engagement_rate_over_time",
"reach_over_time": "reach_over_time",
"impressions_over_time": "impressions_over_time",
"likes_over_time": "likes_over_time",
"clicks_over_time": "clicks_over_time",
"shares_over_time": "shares_over_time",
"comments_over_time": "comments_over_time",
"comments_sentiment": "comments_sentiment_breakdown",
"post_frequency_cs": "post_frequency",
"content_format_breakdown_cs": "content_format_breakdown",
"content_topic_breakdown_cs": "content_topic_breakdown",
"mention_analysis_volume": "mentions_activity",
"mention_analysis_sentiment": "mention_sentiment"
}
# --- Helper function to generate textual data summaries for chatbot ---
def generate_chatbot_data_summaries(
plot_configs_list,
filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df, # Expected to contain 'follower_gains_monthly'
raw_follower_stats_df, # Expected to contain other demographics like 'follower_geo', 'follower_industry'
token_state_value
):
"""
Generates textual summaries for each plot ID to be used by the chatbot,
based on the corrected understanding of DataFrame structures and follower count columns.
"""
data_summaries = {}
# --- Date and Config Columns from token_state ---
# For Posts
date_col_posts = token_state_value.get("config_date_col_posts", "published_at")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label")
# For Mentions
date_col_mentions = token_state_value.get("config_date_col_mentions", "date")
mentions_sentiment_col = "sentiment_label" # As per user's mention df structure
# For Follower Stats - Actual column names provided by user
follower_count_organic_col = "follower_count_organic"
follower_count_paid_col = "follower_count_paid"
# For Follower Stats (Demographics from raw_follower_stats_df)
follower_demographics_type_col = "follower_count_type" # Column indicating 'follower_geo', 'follower_industry'
follower_demographics_category_col = "category_name" # Column indicating 'USA', 'Technology'
# For Follower Gains/Growth (from date_filtered_follower_stats_df)
follower_gains_type_col = "follower_count_type" # Should be 'follower_gains_monthly'
follower_gains_date_col = "category_name" # This is 'YYYY-MM-DD'
# --- Helper: Safely convert to datetime ---
def safe_to_datetime(series, errors='coerce'):
return pd.to_datetime(series, errors=errors)
# --- Prepare DataFrames (copy and convert dates) ---
if filtered_merged_posts_df is not None and not filtered_merged_posts_df.empty:
posts_df = filtered_merged_posts_df.copy()
if date_col_posts in posts_df.columns:
posts_df[date_col_posts] = safe_to_datetime(posts_df[date_col_posts])
else:
logging.warning(f"Date column '{date_col_posts}' not found in posts_df for chatbot summary.")
else:
posts_df = pd.DataFrame()
if filtered_mentions_df is not None and not filtered_mentions_df.empty:
mentions_df = filtered_mentions_df.copy()
if date_col_mentions in mentions_df.columns:
mentions_df[date_col_mentions] = safe_to_datetime(mentions_df[date_col_mentions])
else:
logging.warning(f"Date column '{date_col_mentions}' not found in mentions_df for chatbot summary.")
else:
mentions_df = pd.DataFrame()
# For date_filtered_follower_stats_df (monthly gains)
if date_filtered_follower_stats_df is not None and not date_filtered_follower_stats_df.empty:
follower_monthly_df = date_filtered_follower_stats_df.copy()
if follower_gains_type_col in follower_monthly_df.columns:
follower_monthly_df = follower_monthly_df[follower_monthly_df[follower_gains_type_col] == 'follower_gains_monthly'].copy()
if follower_gains_date_col in follower_monthly_df.columns:
follower_monthly_df['datetime_obj'] = safe_to_datetime(follower_monthly_df[follower_gains_date_col])
follower_monthly_df = follower_monthly_df.dropna(subset=['datetime_obj'])
# Calculate total gains
if follower_count_organic_col in follower_monthly_df.columns and follower_count_paid_col in follower_monthly_df.columns:
follower_monthly_df[follower_count_organic_col] = pd.to_numeric(follower_monthly_df[follower_count_organic_col], errors='coerce').fillna(0)
follower_monthly_df[follower_count_paid_col] = pd.to_numeric(follower_monthly_df[follower_count_paid_col], errors='coerce').fillna(0)
follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_organic_col] + follower_monthly_df[follower_count_paid_col]
elif follower_count_organic_col in follower_monthly_df.columns: # Only organic exists
follower_monthly_df[follower_count_organic_col] = pd.to_numeric(follower_monthly_df[follower_count_organic_col], errors='coerce').fillna(0)
follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_organic_col]
elif follower_count_paid_col in follower_monthly_df.columns: # Only paid exists
follower_monthly_df[follower_count_paid_col] = pd.to_numeric(follower_monthly_df[follower_count_paid_col], errors='coerce').fillna(0)
follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_paid_col]
else:
logging.warning(f"Neither '{follower_count_organic_col}' nor '{follower_count_paid_col}' found in follower_monthly_df for total gains calculation.")
follower_monthly_df['total_monthly_gains'] = 0 # Avoid KeyError later
else:
logging.warning(f"Date column '{follower_gains_date_col}' (from category_name) not found in follower_monthly_df for chatbot summary.")
if 'datetime_obj' not in follower_monthly_df.columns:
follower_monthly_df['datetime_obj'] = pd.NaT
if 'total_monthly_gains' not in follower_monthly_df.columns:
follower_monthly_df['total_monthly_gains'] = 0
else:
follower_monthly_df = pd.DataFrame(columns=[follower_gains_date_col, 'total_monthly_gains', 'datetime_obj'])
if raw_follower_stats_df is not None and not raw_follower_stats_df.empty:
follower_demographics_df = raw_follower_stats_df.copy()
# Calculate total followers for demographics
if follower_count_organic_col in follower_demographics_df.columns and follower_count_paid_col in follower_demographics_df.columns:
follower_demographics_df[follower_count_organic_col] = pd.to_numeric(follower_demographics_df[follower_count_organic_col], errors='coerce').fillna(0)
follower_demographics_df[follower_count_paid_col] = pd.to_numeric(follower_demographics_df[follower_count_paid_col], errors='coerce').fillna(0)
follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_organic_col] + follower_demographics_df[follower_count_paid_col]
elif follower_count_organic_col in follower_demographics_df.columns:
follower_demographics_df[follower_count_organic_col] = pd.to_numeric(follower_demographics_df[follower_count_organic_col], errors='coerce').fillna(0)
follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_organic_col]
elif follower_count_paid_col in follower_demographics_df.columns:
follower_demographics_df[follower_count_paid_col] = pd.to_numeric(follower_demographics_df[follower_count_paid_col], errors='coerce').fillna(0)
follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_paid_col]
else:
logging.warning(f"Neither '{follower_count_organic_col}' nor '{follower_count_paid_col}' found in follower_demographics_df for total count calculation.")
if 'total_follower_count' not in follower_demographics_df.columns:
follower_demographics_df['total_follower_count'] = 0
else:
follower_demographics_df = pd.DataFrame()
for plot_cfg in plot_configs_list:
plot_id = plot_cfg["id"]
plot_label = plot_cfg["label"]
summary_text = f"No specific data summary available for '{plot_label}' for the selected period."
try:
# --- FOLLOWER STATS ---
if plot_id == "followers_count": # Uses follower_monthly_df
if not follower_monthly_df.empty and 'total_monthly_gains' in follower_monthly_df.columns and 'datetime_obj' in follower_monthly_df.columns and not follower_monthly_df['datetime_obj'].isnull().all():
df_summary = follower_monthly_df[['datetime_obj', 'total_monthly_gains']].copy()
df_summary['datetime_obj'] = df_summary['datetime_obj'].dt.strftime('%Y-%m-%d')
df_summary.rename(columns={'datetime_obj': 'Date', 'total_monthly_gains': 'Total Monthly Gains'}, inplace=True)
summary_text = f"Follower Count (Total Monthly Gains):\n{df_summary.sort_values(by='Date').tail(5).to_string(index=False)}"
else:
summary_text = f"Follower count data (total monthly gains) is unavailable or incomplete for '{plot_label}'."
elif plot_id == "followers_growth_rate": # Uses follower_monthly_df
if not follower_monthly_df.empty and 'total_monthly_gains' in follower_monthly_df.columns and 'datetime_obj' in follower_monthly_df.columns and not follower_monthly_df['datetime_obj'].isnull().all():
df_calc = follower_monthly_df.sort_values(by='datetime_obj').copy()
# Growth rate is calculated on the total monthly gains (which are changes, not cumulative counts)
# To calculate growth rate of followers, we'd need cumulative follower count.
# The plot logic also uses pct_change on the gains themselves.
# If 'total_monthly_gains' represents the *change* in followers, then pct_change on this is rate of change of gains.
# If it represents the *cumulative* followers at that point, then pct_change is follower growth rate.
# Assuming 'total_monthly_gains' is the *change* for the month, like the plot logic.
df_calc['total_monthly_gains'] = pd.to_numeric(df_calc['total_monthly_gains'], errors='coerce')
if len(df_calc) >= 2:
# Calculate cumulative sum to get follower count if 'total_monthly_gains' are indeed just gains
# If your 'total_monthly_gains' already IS the total follower count at end of month, remove next line
# For now, assuming it's GAINS, so we need cumulative for growth rate of total followers.
# However, the original plot logic applies pct_change directly to 'follower_gains_monthly'.
# Let's stick to pct_change on the gains/count column for consistency with plot.
# If 'total_monthly_gains' is the actual follower count for that month:
df_calc['growth_rate_monthly'] = df_calc['total_monthly_gains'].pct_change() * 100
df_calc['growth_rate_monthly'] = df_calc['growth_rate_monthly'].round(2)
df_calc.replace([np.inf, -np.inf], np.nan, inplace=True) # Handle division by zero if a gain was 0
df_summary = df_calc[['datetime_obj', 'growth_rate_monthly']].dropna().copy()
df_summary['datetime_obj'] = df_summary['datetime_obj'].dt.strftime('%Y-%m-%d')
df_summary.rename(columns={'datetime_obj': 'Date', 'growth_rate_monthly': 'Growth Rate (%)'}, inplace=True)
if not df_summary.empty:
summary_text = f"Follower Growth Rate (Monthly % based on Total Follower Count/Gains):\n{df_summary.sort_values(by='Date').tail(5).to_string(index=False)}"
else:
summary_text = f"Not enough data points or valid transitions to calculate follower growth rate for '{plot_label}'."
else:
summary_text = f"Not enough data points (need at least 2) to calculate follower growth rate for '{plot_label}'."
else:
summary_text = f"Follower growth rate data (total monthly gains) is unavailable or incomplete for '{plot_label}'."
elif plot_id in ["followers_by_location", "followers_by_role", "followers_by_industry", "followers_by_seniority"]:
demographic_type_map = {
"followers_by_location": "follower_geo",
"followers_by_role": "follower_function",
"followers_by_industry": "follower_industry",
"followers_by_seniority": "follower_seniority"
}
current_demographic_type = demographic_type_map.get(plot_id)
if not follower_demographics_df.empty and \
follower_demographics_type_col in follower_demographics_df.columns and \
follower_demographics_category_col in follower_demographics_df.columns and \
'total_follower_count' in follower_demographics_df.columns: # Check for the calculated total
df_filtered_demographics = follower_demographics_df[
follower_demographics_df[follower_demographics_type_col] == current_demographic_type
].copy()
if not df_filtered_demographics.empty:
df_summary = df_filtered_demographics.groupby(follower_demographics_category_col)['total_follower_count'].sum().reset_index()
df_summary.rename(columns={follower_demographics_category_col: 'Category', 'total_follower_count': 'Total Follower Count'}, inplace=True)
top_5 = df_summary.nlargest(5, 'Total Follower Count')
summary_text = f"Top 5 {plot_label} (Total Followers):\n{top_5.to_string(index=False)}"
else:
summary_text = f"No data available for demographic type '{current_demographic_type}' in '{plot_label}'."
else:
summary_text = f"Follower demographic data columns (including total_follower_count) are missing or incomplete for '{plot_label}'."
# --- POSTS STATS ---
elif plot_id == "engagement_rate":
if not posts_df.empty and 'engagement' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all():
df_resampled = posts_df.set_index(date_col_posts)['engagement'].resample('W').mean().reset_index()
df_resampled['engagement'] = pd.to_numeric(df_resampled['engagement'], errors='coerce').round(2)
df_summary = df_resampled[[date_col_posts, 'engagement']].dropna().copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
summary_text = f"Engagement Rate Over Time (Weekly Avg %):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
else:
summary_text = f"Engagement rate data is unavailable for '{plot_label}'."
elif plot_id == "reach_over_time":
if not posts_df.empty and 'reach' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all():
df_resampled = posts_df.set_index(date_col_posts)['reach'].resample('W').sum().reset_index()
df_resampled['reach'] = pd.to_numeric(df_resampled['reach'], errors='coerce')
df_summary = df_resampled[[date_col_posts, 'reach']].dropna().copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
summary_text = f"Reach Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
else:
summary_text = f"Reach data is unavailable for '{plot_label}'."
elif plot_id == "impressions_over_time":
if not posts_df.empty and 'impressionCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all():
df_resampled = posts_df.set_index(date_col_posts)['impressionCount'].resample('W').sum().reset_index()
df_resampled['impressionCount'] = pd.to_numeric(df_resampled['impressionCount'], errors='coerce')
df_summary = df_resampled[[date_col_posts, 'impressionCount']].dropna().copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
df_summary.rename(columns={'impressionCount': 'Impressions'}, inplace=True)
summary_text = f"Impressions Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
else:
summary_text = f"Impressions data is unavailable for '{plot_label}'."
elif plot_id == "likes_over_time":
if not posts_df.empty and 'likeCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all():
df_resampled = posts_df.set_index(date_col_posts)['likeCount'].resample('W').sum().reset_index()
df_resampled['likeCount'] = pd.to_numeric(df_resampled['likeCount'], errors='coerce')
df_summary = df_resampled[[date_col_posts, 'likeCount']].dropna().copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
df_summary.rename(columns={'likeCount': 'Likes'}, inplace=True)
summary_text = f"Likes Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
else:
summary_text = f"Likes data is unavailable for '{plot_label}'."
elif plot_id == "clicks_over_time":
if not posts_df.empty and 'clickCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all():
df_resampled = posts_df.set_index(date_col_posts)['clickCount'].resample('W').sum().reset_index()
df_resampled['clickCount'] = pd.to_numeric(df_resampled['clickCount'], errors='coerce')
df_summary = df_resampled[[date_col_posts, 'clickCount']].dropna().copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
df_summary.rename(columns={'clickCount': 'Clicks'}, inplace=True)
summary_text = f"Clicks Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
else:
summary_text = f"Clicks data is unavailable for '{plot_label}'."
elif plot_id == "shares_over_time":
if not posts_df.empty and 'shareCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all():
df_resampled = posts_df.set_index(date_col_posts)['shareCount'].resample('W').sum().reset_index()
df_resampled['shareCount'] = pd.to_numeric(df_resampled['shareCount'], errors='coerce')
df_summary = df_resampled[[date_col_posts, 'shareCount']].dropna().copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
df_summary.rename(columns={'shareCount': 'Shares'}, inplace=True)
summary_text = f"Shares Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
elif 'shareCount' not in posts_df.columns and not posts_df.empty : # Check if posts_df is not empty before assuming column is the only issue
summary_text = f"Shares data column ('shareCount') not found for '{plot_label}'."
else:
summary_text = f"Shares data is unavailable for '{plot_label}'."
elif plot_id == "comments_over_time":
if not posts_df.empty and 'commentCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all():
df_resampled = posts_df.set_index(date_col_posts)['commentCount'].resample('W').sum().reset_index()
df_resampled['commentCount'] = pd.to_numeric(df_resampled['commentCount'], errors='coerce')
df_summary = df_resampled[[date_col_posts, 'commentCount']].dropna().copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
df_summary.rename(columns={'commentCount': 'Comments'}, inplace=True)
summary_text = f"Comments Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
else:
summary_text = f"Comments data is unavailable for '{plot_label}'."
elif plot_id == "comments_sentiment":
comment_sentiment_col_posts = "sentiment"
if not posts_df.empty and comment_sentiment_col_posts in posts_df.columns:
sentiment_counts = posts_df[comment_sentiment_col_posts].value_counts().reset_index()
sentiment_counts.columns = ['Sentiment', 'Count']
summary_text = f"Comments Sentiment Breakdown (Posts Data):\n{sentiment_counts.to_string(index=False)}"
else:
summary_text = f"Comment sentiment data ('{comment_sentiment_col_posts}') is unavailable for '{plot_label}'."
elif plot_id == "post_frequency_cs":
if not posts_df.empty and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all():
post_counts_weekly = posts_df.set_index(date_col_posts).resample('W').size().reset_index(name='post_count')
post_counts_weekly.rename(columns={date_col_posts: 'Week', 'post_count': 'Posts'}, inplace=True)
post_counts_weekly['Week'] = post_counts_weekly['Week'].dt.strftime('%Y-%m-%d (Week of)')
summary_text = f"Post Frequency (Weekly):\n{post_counts_weekly.sort_values(by='Week').tail(5).to_string(index=False)}"
else:
summary_text = f"Post frequency data is unavailable for '{plot_label}'."
elif plot_id == "content_format_breakdown_cs":
if not posts_df.empty and media_type_col_name in posts_df.columns:
format_counts = posts_df[media_type_col_name].value_counts().reset_index()
format_counts.columns = ['Format', 'Count']
summary_text = f"Content Format Breakdown:\n{format_counts.nlargest(5, 'Count').to_string(index=False)}"
else:
summary_text = f"Content format data ('{media_type_col_name}') is unavailable for '{plot_label}'."
elif plot_id == "content_topic_breakdown_cs":
if not posts_df.empty and eb_labels_col_name in posts_df.columns:
try:
# Ensure the column is not all NaN before trying to check for lists or explode
if posts_df[eb_labels_col_name].notna().any():
if posts_df[eb_labels_col_name].apply(lambda x: isinstance(x, list)).any():
topic_counts = posts_df.explode(eb_labels_col_name)[eb_labels_col_name].value_counts().reset_index()
else:
topic_counts = posts_df[eb_labels_col_name].value_counts().reset_index()
topic_counts.columns = ['Topic', 'Count']
summary_text = f"Content Topic Breakdown (Top 5):\n{topic_counts.nlargest(5, 'Count').to_string(index=False)}"
else:
summary_text = f"Content topic data ('{eb_labels_col_name}') contains no valid topics for '{plot_label}'."
except Exception as e_topic:
logging.warning(f"Could not process topic breakdown for '{eb_labels_col_name}': {e_topic}")
summary_text = f"Content topic data ('{eb_labels_col_name}') could not be processed for '{plot_label}'."
else:
summary_text = f"Content topic data ('{eb_labels_col_name}') is unavailable for '{plot_label}'."
# --- MENTIONS STATS ---
elif plot_id == "mention_analysis_volume":
if not mentions_df.empty and date_col_mentions in mentions_df.columns and not mentions_df[date_col_mentions].isnull().all():
mentions_over_time = mentions_df.set_index(date_col_mentions).resample('W').size().reset_index(name='mention_count')
mentions_over_time.rename(columns={date_col_mentions: 'Week', 'mention_count': 'Mentions'}, inplace=True)
mentions_over_time['Week'] = mentions_over_time['Week'].dt.strftime('%Y-%m-%d (Week of)')
if not mentions_over_time.empty:
summary_text = f"Mentions Volume (Weekly):\n{mentions_over_time.sort_values(by='Week').tail(5).to_string(index=False)}"
else:
summary_text = f"No mention activity found for '{plot_label}' in the selected period."
else:
summary_text = f"Mentions volume data is unavailable for '{plot_label}'."
elif plot_id == "mention_analysis_sentiment":
if not mentions_df.empty and mentions_sentiment_col in mentions_df.columns:
sentiment_counts = mentions_df[mentions_sentiment_col].value_counts().reset_index()
sentiment_counts.columns = ['Sentiment', 'Count']
summary_text = f"Mentions Sentiment Breakdown:\n{sentiment_counts.to_string(index=False)}"
else:
summary_text = f"Mention sentiment data ('{mentions_sentiment_col}') is unavailable for '{plot_label}'."
data_summaries[plot_id] = summary_text
except KeyError as e:
logging.warning(f"KeyError generating summary for {plot_id} ('{plot_label}'): {e}. Using default summary.")
data_summaries[plot_id] = f"Data summary generation error for '{plot_label}' (missing column: {e})."
except Exception as e:
logging.error(f"Error generating summary for {plot_id} ('{plot_label}'): {e}", exc_info=True)
data_summaries[plot_id] = f"Error generating data summary for '{plot_label}'."
return data_summaries
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 19 # Ensure this matches the number of plots generated
plot_data_summaries_for_chatbot = {} # Initialize dict for chatbot summaries
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)]
# For each plot_config, add a default "no data" summary
for p_cfg in current_plot_configs:
plot_data_summaries_for_chatbot[p_cfg["id"]] = "Accesso negato, nessun dato per il chatbot."
return [message] + placeholder_figs + [plot_data_summaries_for_chatbot]
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df, # For time-based follower plots
raw_follower_stats_df, # For demographic follower plots
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
# Generate data summaries for chatbot AFTER data preparation
plot_data_summaries_for_chatbot = generate_chatbot_data_summaries(
current_plot_configs, # Pass the plot_configs list
filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
token_state_value
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
for p_cfg in current_plot_configs:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore preparazione dati: {e}"
return [error_msg] + placeholder_figs + [plot_data_summaries_for_chatbot]
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label")
plot_figs = [] # Initialize list to hold plot figures
plot_titles_for_errors = [p_cfg["label"] for p_cfg in current_plot_configs]
try:
# Dinamiche dei Follower (2 plots)
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) # Assuming this uses 'follower_gains_monthly' to calculate rate
# Demografia Follower (4 plots)
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"))
# Approfondimenti Performance Post (4 plots)
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) # Ensure 'impressions_sum' or equivalent is used by this func
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
# Engagement Dettagliato Post nel Tempo (4 plots)
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) # Make sure 'comment_sentiment' exists
# Analisi Strategia Contenuti (3 plots)
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
# Analisi Menzioni (Dettaglio) (2 plots)
plot_figs.append(generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions))
plot_figs.append(generate_mention_sentiment_plot(filtered_mentions_df)) # Make sure this function handles empty/malformed df
if len(plot_figs) != num_expected_plots:
logging.warning(f"Mismatch in generated plots. Expected {num_expected_plots}, got {len(plot_figs)}. This will cause UI update issues.")
while len(plot_figs) < num_expected_plots:
plot_figs.append(create_placeholder_plot(title="Grafico Non Generato", message="Logica di generazione incompleta."))
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Intervallo Personalizzato":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi"
message += f" (Da: {s_display} A: {e_display})"
final_plot_figs = []
for i, p_fig_candidate in enumerate(plot_figs):
if p_fig_candidate is not None and not isinstance(p_fig_candidate, str): # Basic check for a plot object
final_plot_figs.append(p_fig_candidate)
else:
err_title = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
logging.warning(f"Plot {err_title} (index {i}) non è una figura valida: {p_fig_candidate}. Uso placeholder.")
final_plot_figs.append(create_placeholder_plot(title=f"Errore: {err_title}", message="Impossibile generare figura."))
return [message] + final_plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]
except (KeyError, ValueError) as e_plot_data:
logging.error(f"Errore dati durante la generazione di un grafico specifico: {e_plot_data}", exc_info=True)
error_msg_display = f"Errore dati in un grafico: {str(e_plot_data)[:100]}"
num_already_generated = len(plot_figs)
for i in range(num_already_generated, num_expected_plots):
err_title_fill = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
plot_figs.append(create_placeholder_plot(title=f"Errore Dati: {err_title_fill}", message=f"Precedente errore: {str(e_plot_data)[:50]}"))
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
if p_cfg["id"] not in plot_data_summaries_for_chatbot:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore dati grafico: {e_plot_data}"
return [error_msg_display] + plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]
except Exception as e_general:
error_msg = f"❌ Errore generale durante la generazione dei grafici: {e_general}"
logging.error(error_msg, exc_info=True)
placeholder_figs_general = [create_placeholder_plot(title=plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}", message=str(e_general)) for i in range(num_expected_plots)]
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
if p_cfg["id"] not in plot_data_summaries_for_chatbot:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore generale grafici: {e_general}"
return [error_msg] + placeholder_figs_general + [plot_data_summaries_for_chatbot]
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({}) # NEW: Store data summaries for chatbot
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime") # Use gr.DateTime
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime") # Use gr.DateTime
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
plot_ui_objects = build_analytics_tab_plot_area(plot_configs)
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
async def handle_panel_action(
plot_id_clicked: str,
action_type: str,
current_active_action_from_state: dict,
current_chat_histories: dict,
current_chat_plot_id: str,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
logging.info(f"Azione '{action_type}' per grafico: {plot_id_clicked}. Attualmente attivo: {current_active_action_from_state}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Configurazione non trovata per plot_id {plot_id_clicked}")
num_button_updates = 2 * len(plot_configs) # insights, formula buttons
error_updates = [gr.update(visible=False)] * 7 # action_col, chatbot, input, suggestions_row, 3x sugg_btn
error_updates.append(gr.update(visible=False, value="")) # formula_md (visibility and value)
error_updates.extend([current_active_action_from_state, current_chat_plot_id, current_chat_histories])
error_updates.extend([gr.update()] * num_button_updates)
return error_updates
clicked_plot_label = clicked_plot_config["label"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=True)
insights_chatbot_visible_update = gr.update(visible=False)
insights_chat_input_visible_update = gr.update(visible=False)
insights_suggestions_row_visible_update = gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False)
chatbot_content_update = gr.update() # No change by default
suggestion_1_update = gr.update()
suggestion_2_update = gr.update()
suggestion_3_update = gr.update()
new_current_chat_plot_id = current_chat_plot_id
updated_chat_histories = current_chat_histories
formula_content_update = gr.update()
if is_toggling_off:
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=False)
new_current_chat_plot_id = None
logging.info(f"Chiusura pannello {action_type} per {plot_id_clicked}")
else:
new_active_action_state_to_set = hypothetical_new_active_state
if action_type == "insights":
insights_chatbot_visible_update = gr.update(visible=True)
insights_chat_input_visible_update = gr.update(visible=True)
insights_suggestions_row_visible_update = gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
chat_history_for_this_plot = current_chat_histories.get(plot_id_clicked, [])
plot_specific_data_summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"Nessun sommario dati specifico disponibile per '{clicked_plot_label}'.")
if not chat_history_for_this_plot:
initial_llm_prompt, suggestions = get_initial_insight_prompt_and_suggestions(
plot_id_clicked,
clicked_plot_label,
plot_specific_data_summary
)
# History for LLM's first turn: the system's prompt as a user message
history_for_llm_first_turn = [{"role": "user", "content": initial_llm_prompt}]
logging.info(f"Generating initial LLM insight for {plot_id_clicked}...")
initial_bot_response_text = await generate_llm_response(
user_message=initial_llm_prompt, # For context/logging in handler
plot_id=plot_id_clicked,
plot_label=clicked_plot_label,
chat_history_for_plot=history_for_llm_first_turn,
plot_data_summary=plot_specific_data_summary
)
logging.info(f"LLM initial insight received for {plot_id_clicked}.")
# History for Gradio display starts with the assistant's response
chat_history_for_this_plot = [{"role": "assistant", "content": initial_bot_response_text}]
updated_chat_histories = current_chat_histories.copy()
updated_chat_histories[plot_id_clicked] = chat_history_for_this_plot
else: # History exists, get fresh suggestions
_, suggestions = get_initial_insight_prompt_and_suggestions(
plot_id_clicked,
clicked_plot_label,
plot_specific_data_summary
)
chatbot_content_update = gr.update(value=chat_history_for_this_plot)
suggestion_1_update = gr.update(value=suggestions[0])
suggestion_2_update = gr.update(value=suggestions[1])
suggestion_3_update = gr.update(value=suggestions[2])
logging.info(f"Apertura pannello CHAT per {plot_id_clicked} ('{clicked_plot_label}')")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True)
formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
formula_text = f"**Formula/Metodologia per: {clicked_plot_label}**\n\nID Grafico: `{plot_id_clicked}`.\n\n"
if formula_key and formula_key in PLOT_FORMULAS:
formula_data = PLOT_FORMULAS[formula_key]
formula_text += f"### {formula_data['title']}\n\n"
formula_text += f"**Descrizione:**\n{formula_data['description']}\n\n"
formula_text += "**Come viene calcolato:**\n"
for step in formula_data['calculation_steps']:
formula_text += f"- {step}\n"
else:
formula_text += "(Nessuna informazione dettagliata sulla formula trovata per questo ID grafico in `formulas.py`)"
formula_content_update = gr.update(value=formula_text)
new_current_chat_plot_id = None
logging.info(f"Apertura pannello FORMULA per {plot_id_clicked} (mappato a {formula_key})")
all_button_icon_updates = []
for cfg_item in plot_configs:
p_id_iter = cfg_item["id"]
# Update insights button icon
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}:
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_icon_updates.append(gr.update(value=BOMB_ICON))
# Update formula button icon
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}:
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_icon_updates.append(gr.update(value=FORMULA_ICON))
final_updates = [
action_col_visible_update,
insights_chatbot_visible_update, chatbot_content_update,
insights_chat_input_visible_update,
insights_suggestions_row_visible_update, suggestion_1_update, suggestion_2_update, suggestion_3_update,
formula_display_visible_update, formula_content_update,
new_active_action_state_to_set,
new_current_chat_plot_id,
updated_chat_histories
] + all_button_icon_updates
return final_updates
async def handle_chat_message_submission(
user_message: str,
current_plot_id: str,
chat_histories: dict,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
if not current_plot_id or not user_message.strip():
history_for_plot = chat_histories.get(current_plot_id, [])
# Yield current state if no action needed
yield history_for_plot, gr.update(value=""), chat_histories # Clear input, return current history
return
plot_config = next((p for p in plot_configs if p["id"] == current_plot_id), None)
plot_label = plot_config["label"] if plot_config else "Grafico Selezionato"
# Retrieve the specific data summary for the current plot
plot_specific_data_summary = current_plot_data_for_chatbot.get(current_plot_id, f"Nessun sommario dati specifico disponibile per '{plot_label}'.")
history_for_plot = chat_histories.get(current_plot_id, []).copy()
history_for_plot.append({"role": "user", "content": user_message})
# Update UI immediately with user message
yield history_for_plot, gr.update(value=""), chat_histories # Clear input
# Pass the data summary to the LLM along with the history
bot_response_text = await generate_llm_response(
user_message,
current_plot_id,
plot_label,
history_for_plot, # This history now includes the user message
plot_specific_data_summary # Explicitly pass for this turn if needed by LLM handler logic
)
history_for_plot.append({"role": "assistant", "content": bot_response_text})
updated_chat_histories = chat_histories.copy()
updated_chat_histories[current_plot_id] = history_for_plot
yield history_for_plot, "", updated_chat_histories
async def handle_suggested_question_click(
suggestion_text: str,
current_plot_id: str,
chat_histories: dict,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
if not current_plot_id or not suggestion_text.strip():
history_for_plot = chat_histories.get(current_plot_id, [])
yield history_for_plot, gr.update(value=""), chat_histories
return
# This is essentially the same as submitting a message, so reuse logic
# The suggestion_text becomes the user_message
async for update in handle_chat_message_submission(
suggestion_text,
current_plot_id,
chat_histories,
current_plot_data_for_chatbot
):
yield update
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state):
logging.info(f"Click su Esplora per: {plot_id_clicked}. Attualmente esplorato da stato: {current_explored_plot_id_from_state}")
if not plot_ui_objects:
logging.error("plot_ui_objects non popolato durante handle_explore_click.")
updates_for_missing_ui = [current_explored_plot_id_from_state]
for _ in plot_configs: # panel_component, explore_button
updates_for_missing_ui.extend([gr.update(), gr.update()])
return updates_for_missing_ui
new_explored_id_to_set = None
is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state)
if is_toggling_off:
new_explored_id_to_set = None
logging.info(f"Interruzione esplorazione grafico: {plot_id_clicked}")
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Esplorazione grafico: {plot_id_clicked}")
panel_and_button_updates = []
for cfg in plot_configs:
p_id = cfg["id"]
if p_id in plot_ui_objects:
panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set)
panel_and_button_updates.append(gr.update(visible=panel_visible))
if p_id == new_explored_id_to_set:
panel_and_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
panel_and_button_updates.append(gr.update(value=EXPLORE_ICON))
else:
panel_and_button_updates.extend([gr.update(), gr.update()])
final_updates = [new_explored_id_to_set] + panel_and_button_updates
return final_updates
# Outputs for panel actions
action_panel_outputs_list = [
global_actions_column_ui,
insights_chatbot_ui, insights_chatbot_ui, # Target chatbot UI for visibility and value
insights_chat_input_ui,
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_display_markdown_ui, # Target markdown for visibility and value
active_panel_action_state,
current_chat_plot_id_st,
chat_histories_st
]
for cfg_item_action in plot_configs:
pid_action = cfg_item_action["id"]
if pid_action in plot_ui_objects:
action_panel_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"])
action_panel_outputs_list.append(plot_ui_objects[pid_action]["formula_button"])
else:
action_panel_outputs_list.extend([gr.update(), gr.update()]) # Use gr.update() as placeholder
# Outputs for explore actions
explore_buttons_outputs_list = [explored_plot_id_state]
for cfg_item_explore in plot_configs:
pid_explore = cfg_item_explore["id"]
if pid_explore in plot_ui_objects:
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"])
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"])
else:
explore_buttons_outputs_list.extend([gr.update(), gr.update()])
# Inputs for panel actions
action_click_inputs = [
active_panel_action_state,
chat_histories_st,
current_chat_plot_id_st,
plot_data_for_chatbot_st # NEW: pass data summaries state
]
# Inputs for explore actions
explore_click_inputs = [explored_plot_id_state]
def create_panel_action_handler(p_id, action_type_str):
async def _handler(current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries): # Add summaries
logging.debug(f"Entering _handler for plot_id: {p_id}, action: {action_type_str}")
result = await handle_panel_action(p_id, action_type_str, current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries) # Pass summaries
logging.debug(f"_handler for plot_id: {p_id}, action: {action_type_str} completed.")
return result
return _handler
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
ui_obj["bomb_button"].click(
fn=create_panel_action_handler(plot_id, "insights"),
inputs=action_click_inputs,
outputs=action_panel_outputs_list,
api_name=f"action_insights_{plot_id}"
)
ui_obj["formula_button"].click(
fn=create_panel_action_handler(plot_id, "formula"),
inputs=action_click_inputs,
outputs=action_panel_outputs_list,
api_name=f"action_formula_{plot_id}"
)
ui_obj["explore_button"].click(
fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val),
inputs=explore_click_inputs,
outputs=explore_buttons_outputs_list,
api_name=f"action_explore_{plot_id}"
)
else:
logging.warning(f"Oggetto UI per plot_id '{plot_id}' non trovato durante il tentativo di associare i gestori di click.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state
insights_chat_input_ui.submit(
fn=handle_chat_message_submission,
inputs=chat_submission_inputs,
outputs=chat_submission_outputs,
api_name="submit_chat_message"
)
suggestion_click_inputs = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state
insights_suggestion_1_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_1_btn] + suggestion_click_inputs, # Pass button value as first arg
outputs=chat_submission_outputs,
api_name="click_suggestion_1"
)
insights_suggestion_2_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_2_btn] + suggestion_click_inputs,
outputs=chat_submission_outputs,
api_name="click_suggestion_2"
)
insights_suggestion_3_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_3_btn] + suggestion_click_inputs,
outputs=chat_submission_outputs,
api_name="click_suggestion_3"
)
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val, current_chat_histories):
logging.info("Aggiornamento di tutti gli elementi UI delle analisi e reset delle azioni/chat.")
# Pass plot_configs to the update function so it can be used by generate_chatbot_data_summaries
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val, plot_configs
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:-1] # All items except first (status) and last (summaries)
new_plot_data_summaries = plot_generation_results[-1] # Last item is the summaries dict
all_updates = [status_message_update]
for i in range(len(plot_configs)):
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
all_updates.append(create_placeholder_plot("Errore Figura", f"Figura mancante per grafico {plot_configs[i]['id']}"))
all_updates.extend([
gr.update(visible=False), # global_actions_column_ui
gr.update(value=[], visible=False), # insights_chatbot_ui (value & visibility)
gr.update(value="", visible=False), # insights_chat_input_ui (value & visibility)
gr.update(visible=False), # insights_suggestions_row_ui
gr.update(value="Suggerimento 1"), # insights_suggestion_1_btn (reset value, visibility handled by row)
gr.update(value="Suggerimento 2"), # insights_suggestion_2_btn
gr.update(value="Suggerimento 3"), # insights_suggestion_3_btn
gr.update(value="I dettagli sulla formula/metodologia appariranno qui.", visible=False), # formula_display_markdown_ui
None, # active_panel_action_state
None, # current_chat_plot_id_st
{}, # chat_histories_st (reset chat histories on filter change)
new_plot_data_summaries # NEW: plot_data_for_chatbot_st
])
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
all_updates.append(gr.update(value=BOMB_ICON))
all_updates.append(gr.update(value=FORMULA_ICON))
all_updates.append(gr.update(value=EXPLORE_ICON))
all_updates.append(gr.update(visible=True)) # panel_component visibility
else:
all_updates.extend([gr.update(), gr.update(), gr.update(), gr.update()])
all_updates.append(None) # explored_plot_id_state
logging.info(f"Preparati {len(all_updates)} aggiornamenti per il refresh delle analisi.")
return all_updates
apply_filter_and_sync_outputs_list = [analytics_status_md]
for config_item_filter_sync in plot_configs:
pid_filter_sync = config_item_filter_sync["id"]
if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"])
else:
apply_filter_and_sync_outputs_list.append(gr.update())
apply_filter_and_sync_outputs_list.extend([
global_actions_column_ui, # Reset visibility
insights_chatbot_ui, # Reset content & visibility
insights_chat_input_ui, # Reset content & visibility
insights_suggestions_row_ui, # Reset visibility
insights_suggestion_1_btn, # Reset text & visibility
insights_suggestion_2_btn,
insights_suggestion_3_btn,
formula_display_markdown_ui, # Reset content & visibility
active_panel_action_state, # Reset state
current_chat_plot_id_st, # Reset state
chat_histories_st, # Preserve or reset state (resetting via refresh_all_analytics_ui_elements)
plot_data_for_chatbot_st # NEW: Update this state
])
for cfg_filter_sync_btns in plot_configs:
pid_filter_sync_btns = cfg_filter_sync_btns["id"]
if pid_filter_sync_btns in plot_ui_objects:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"])
else:
apply_filter_and_sync_outputs_list.extend([gr.update(), gr.update(), gr.update(), gr.update()])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state) # Reset state
logging.info(f"Output totali definiti per apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}")
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn], show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements, # This will now also update chatbot data summaries
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"ATTENZIONE: Variabile d'ambiente '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("ATTENZIONE: Variabili d'ambiente Bubble non completamente impostate.")
try:
logging.info(f"Versione Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError:
logging.warning("Matplotlib non trovato direttamente, ma potrebbe essere usato dai generatori di grafici.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True) |