Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import os | |
import logging | |
import matplotlib | |
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio | |
import matplotlib.pyplot as plt | |
# --- Module Imports --- | |
from gradio_utils import get_url_user_token | |
# Functions from newly created/refactored modules | |
from config import ( | |
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, | |
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR | |
) | |
from state_manager import process_and_store_bubble_token | |
from sync_logic import sync_all_linkedin_data_orchestrator | |
from ui_generators import ( | |
display_main_dashboard, | |
run_mentions_tab_display, | |
run_follower_stats_tab_display | |
) | |
# Corrected import for analytics_data_processing | |
from analytics_data_processing import prepare_filtered_analytics_data | |
from analytics_plot_generator import ( | |
generate_posts_activity_plot, generate_engagement_type_plot, | |
generate_mentions_activity_plot, generate_mention_sentiment_plot, | |
generate_followers_count_over_time_plot, | |
generate_followers_growth_rate_plot, | |
generate_followers_by_demographics_plot, | |
generate_engagement_rate_over_time_plot, | |
generate_reach_over_time_plot, | |
generate_impressions_over_time_plot, | |
create_placeholder_plot, # For initializing plots | |
# --- Import new plot functions --- | |
generate_likes_over_time_plot, | |
generate_clicks_over_time_plot, | |
generate_shares_over_time_plot, | |
generate_comments_over_time_plot, | |
generate_comments_sentiment_breakdown_plot | |
) | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') | |
# --- Analytics Tab: Plot Update Function --- | |
def update_analytics_plots(token_state_value, date_filter_option, custom_start_date, custom_end_date): | |
""" | |
Prepares analytics data using external processing function and then generates plots. | |
""" | |
logging.info(f"Updating analytics plots. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") | |
# --- Increased number of expected plots --- | |
num_expected_plots = 18 # Was 13, added 5 new plots | |
if not token_state_value or not token_state_value.get("token"): | |
message = "β Access denied. No token. Cannot generate analytics." | |
logging.warning(message) | |
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)] | |
return [message] + placeholder_figs | |
try: | |
# prepare_filtered_analytics_data might need to be updated if new DFs are required for new plots (e.g. comment sentiment) | |
# For now, we assume it returns the same set of DFs and new plots will try to use them or handle missing data. | |
(filtered_merged_posts_df, | |
filtered_mentions_df, | |
date_filtered_follower_stats_df, | |
raw_follower_stats_df, | |
start_dt_for_msg, end_dt_for_msg) = \ | |
prepare_filtered_analytics_data( | |
token_state_value, date_filter_option, custom_start_date, custom_end_date | |
) | |
# Hypothetical: If prepare_filtered_analytics_data was updated to return comment sentiment data: | |
# filtered_comments_with_sentiment_df = ... # (This would be the 7th item in the tuple) | |
# For now, we will pass filtered_merged_posts_df to generate_comments_sentiment_breakdown_plot, | |
# and that function will handle missing sentiment columns by showing a placeholder. | |
# Or, if you have comment sentiment data in another DataFrame in token_state, retrieve it here. | |
# e.g., comments_df_with_sentiment = token_state_value.get("bubble_comments_sentiment_df", pd.DataFrame()) | |
except Exception as e: | |
error_msg = f"β Error preparing analytics data: {e}" | |
logging.error(error_msg, exc_info=True) | |
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)] | |
return [error_msg] + placeholder_figs | |
date_column_posts = token_state_value.get("config_date_col_posts", "published_at") | |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date") | |
# config_date_col_followers_source = token_state_value.get("config_date_col_followers", "date") | |
logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.") | |
logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.") | |
try: | |
# Existing plots | |
plot_posts_activity = generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts) | |
plot_engagement_type = generate_engagement_type_plot(filtered_merged_posts_df) | |
plot_mentions_activity = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions) | |
plot_mention_sentiment = generate_mention_sentiment_plot(filtered_mentions_df) | |
plot_followers_count = generate_followers_count_over_time_plot( | |
date_filtered_follower_stats_df, | |
type_filter_column='follower_count_type', | |
type_value='follower_gains_monthly' | |
) | |
plot_followers_growth_rate = generate_followers_growth_rate_plot( | |
date_filtered_follower_stats_df, | |
type_filter_column='follower_count_type', | |
type_value='follower_gains_monthly' | |
) | |
plot_followers_by_location = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_geo', plot_title="Followers by Location") | |
plot_followers_by_role = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_function', plot_title="Followers by Role") | |
plot_followers_by_industry = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_industry', plot_title="Followers by Industry") | |
plot_followers_by_seniority = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_seniority', plot_title="Followers by Seniority") | |
plot_engagement_rate = generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, engagement_rate_col='engagement') | |
plot_reach_over_time = generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, reach_col='clickCount') | |
plot_impressions_over_time = generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, impressions_col='impressionCount') | |
# --- Generate new plots --- | |
plot_likes_over_time = generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, likes_col='likeCount') | |
plot_clicks_over_time = generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, clicks_col='clickCount') | |
plot_shares_over_time = generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, shares_col='shareCount') | |
plot_comments_over_time = generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, comments_col='commentCount') | |
# For comment sentiment, pass a DataFrame that is expected to have comment-level sentiment. | |
# If `filtered_merged_posts_df` is passed and lacks 'comment_sentiment' column, the plot function will show a placeholder. | |
# If you have a specific df for this, e.g., `filtered_comments_with_sentiment_df` from `prepare_filtered_analytics_data` (if modified) | |
# or from `token_state_value.get("bubble_comments_sentiment_df")`, use that one. | |
# For this example, we assume `filtered_merged_posts_df` is passed and the plot function handles it. | |
plot_comments_sentiment_breakdown = generate_comments_sentiment_breakdown_plot( | |
filtered_merged_posts_df, # Or your specific df with comment sentiments | |
sentiment_column='sentiment' # Assuming 'sentiment' column in post_df might be a proxy, or change to 'comment_sentiment' if that column exists | |
# The plot function will show a placeholder if this column isn't suitable or found. | |
) | |
message = f"π Analytics updated for period: {date_filter_option}" | |
if date_filter_option == "Custom Range": | |
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any" | |
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any" | |
message += f" (From: {s_display} To: {e_display})" | |
all_generated_plots = [ | |
plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, | |
plot_followers_count, plot_followers_growth_rate, | |
plot_followers_by_location, plot_followers_by_role, plot_followers_by_industry, plot_followers_by_seniority, | |
plot_engagement_rate, plot_reach_over_time, plot_impressions_over_time, | |
# --- Add new plot objects to the list --- | |
plot_likes_over_time, plot_clicks_over_time, | |
plot_shares_over_time, plot_comments_over_time, | |
plot_comments_sentiment_breakdown | |
] | |
num_plots_generated = sum(1 for p in all_generated_plots if p is not None and not isinstance(p, str)) | |
logging.info(f"Successfully generated {num_plots_generated} plots out of {num_expected_plots} expected.") | |
# Ensure the number of returned plots matches num_expected_plots, padding with placeholders if necessary | |
# This is crucial if some plot functions might return None on error and we need to match the Gradio outputs list length | |
final_plots_list = [] | |
for p in all_generated_plots: | |
if p is not None and not isinstance(p, str): # isinstance check for safety, though plots should be figs | |
final_plots_list.append(p) | |
else: # If a plot failed and returned None or an error string (which it shouldn't, should be placeholder fig) | |
logging.warning(f"A plot generation failed or returned unexpected type, using placeholder. Plot: {p}") | |
final_plots_list.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot.")) | |
# If fewer plots were generated than expected (e.g. due to early exit or major error in a plot function) | |
while len(final_plots_list) < num_expected_plots: | |
logging.warning(f"Padding missing plot with placeholder. Expected {num_expected_plots}, got {len(final_plots_list)} so far.") | |
final_plots_list.append(create_placeholder_plot(title="Missing Plot", message="Plot could not be generated.")) | |
if len(final_plots_list) > num_expected_plots + 5: # Safety break | |
logging.error("Too many placeholders added, breaking loop.") | |
break | |
return [message] + final_plots_list[:num_expected_plots] # Ensure correct number of outputs | |
except Exception as e: | |
error_msg = f"β Error generating analytics plots: {e}" | |
logging.error(error_msg, exc_info=True) | |
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)] | |
return [error_msg] + placeholder_figs | |
# --- Gradio UI Blocks --- | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), | |
title="LinkedIn Organization Dashboard") as app: | |
token_state = gr.State(value={ | |
"token": None, "client_id": None, "org_urn": None, | |
"bubble_posts_df": pd.DataFrame(), | |
"bubble_post_stats_df": pd.DataFrame(), | |
"bubble_mentions_df": pd.DataFrame(), | |
"bubble_follower_stats_df": pd.DataFrame(), | |
# Consider adding "bubble_comments_sentiment_df": pd.DataFrame() if you plan to fetch this data | |
"fetch_count_for_api": 0, | |
"url_user_token_temp_storage": None, | |
"config_date_col_posts": "published_at", | |
"config_date_col_mentions": "date", | |
"config_date_col_followers": "date" | |
}) | |
gr.Markdown("# π LinkedIn Organization Dashboard") | |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False) | |
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...") | |
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False) | |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) | |
def initial_load_sequence(url_token, org_urn_val, current_state): | |
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}") | |
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) | |
dashboard_content = display_main_dashboard(new_state) | |
return status_msg, new_state, btn_update, dashboard_content | |
with gr.Tabs() as tabs: | |
with gr.TabItem("1οΈβ£ Dashboard & Sync", id="tab_dashboard_sync"): | |
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.") | |
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False) | |
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>") | |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>") | |
org_urn_display.change( | |
fn=initial_load_sequence, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], | |
show_progress="full" | |
) | |
sync_click_event = sync_data_btn.click( | |
fn=sync_all_linkedin_data_orchestrator, | |
inputs=[token_state], | |
outputs=[sync_status_html_output, token_state], | |
show_progress="full" | |
).then( | |
fn=process_and_store_bubble_token, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, sync_data_btn], | |
show_progress=False | |
).then( | |
fn=display_main_dashboard, | |
inputs=[token_state], | |
outputs=[dashboard_display_html], | |
show_progress=False | |
) | |
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"): | |
gr.Markdown("## π LinkedIn Performance Analytics") | |
gr.Markdown("Select a date range to filter Posts and Mentions analytics. Follower demographic plots show overall latest data. Follower time-series plots respect the selected date range if applicable to their data source (e.g. monthly gains).") | |
analytics_status_md = gr.Markdown("Analytics status will appear here...") | |
with gr.Row(): | |
date_filter_selector = gr.Radio( | |
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"], | |
label="Select Date Range (for Posts, Mentions, and some Follower time-series)", | |
value="Last 30 Days" | |
) | |
custom_start_date_picker = gr.DateTime(label="Start Date (Custom)", visible=False, include_time=False, type="datetime") # Changed to datetime | |
custom_end_date_picker = gr.DateTime(label="End Date (Custom)", visible=False, include_time=False, type="datetime") # Changed to datetime | |
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary") | |
def toggle_custom_date_pickers(selection): | |
is_custom = selection == "Custom Range" | |
return gr.update(visible=is_custom), gr.update(visible=is_custom) | |
date_filter_selector.change( | |
fn=toggle_custom_date_pickers, | |
inputs=[date_filter_selector], | |
outputs=[custom_start_date_picker, custom_end_date_picker] | |
) | |
gr.Markdown("### Posts & Engagement Overview (Filtered by Date)") | |
with gr.Row(): | |
posts_activity_plot = gr.Plot(label="Posts Activity Over Time") | |
engagement_type_plot = gr.Plot(label="Post Engagement Types") | |
gr.Markdown("### Mentions Overview (Filtered by Date)") | |
with gr.Row(): | |
mentions_activity_plot = gr.Plot(label="Mentions Activity Over Time") | |
mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution") | |
gr.Markdown("### Follower Dynamics") | |
with gr.Row(): | |
followers_count_plot = gr.Plot(label="Followers Count Over Time (e.g., Monthly Gains)") | |
followers_growth_rate_plot = gr.Plot(label="Followers Growth Rate (e.g., Monthly Gains)") | |
gr.Markdown("### Follower Demographics (Overall Latest Data)") | |
with gr.Row(): | |
followers_by_location_plot = gr.Plot(label="Followers by Location") | |
followers_by_role_plot = gr.Plot(label="Followers by Role (Function)") | |
with gr.Row(): | |
followers_by_industry_plot = gr.Plot(label="Followers by Industry") | |
followers_by_seniority_plot = gr.Plot(label="Followers by Seniority") | |
gr.Markdown("### Post Performance Insights (Filtered by Date)") | |
with gr.Row(): | |
engagement_rate_plot = gr.Plot(label="Engagement Rate Over Time") | |
reach_over_time_plot = gr.Plot(label="Reach Over Time (Clicks)") # This was originally in its own row | |
with gr.Row(): # Moved impressions to be paired with reach if desired, or keep separate | |
impressions_over_time_plot = gr.Plot(label="Impressions Over Time") | |
# New plots will start here, keeping 2 per row | |
likes_over_time_plot = gr.Plot(label="Reactions (Likes) Over Time") | |
gr.Markdown("### Detailed Post Engagement Over Time (Filtered by Date)") | |
with gr.Row(): | |
clicks_over_time_plot = gr.Plot(label="Clicks Over Time") | |
shares_over_time_plot = gr.Plot(label="Shares Over Time") | |
with gr.Row(): | |
comments_over_time_plot = gr.Plot(label="Comments Over Time") | |
# For the 5th new plot, "Breakdown of Comments by Sentiment" | |
# It will be alone in this row, or you can add another plot next to it later. | |
comments_sentiment_plot = gr.Plot(label="Breakdown of Comments by Sentiment") | |
analytics_plot_outputs = [ | |
analytics_status_md, posts_activity_plot, engagement_type_plot, | |
mentions_activity_plot, mention_sentiment_plot, | |
followers_count_plot, followers_growth_rate_plot, | |
followers_by_location_plot, followers_by_role_plot, | |
followers_by_industry_plot, followers_by_seniority_plot, | |
engagement_rate_plot, reach_over_time_plot, impressions_over_time_plot, | |
# --- Add new plot components to the output list in the correct order --- | |
likes_over_time_plot, clicks_over_time_plot, | |
shares_over_time_plot, comments_over_time_plot, | |
comments_sentiment_plot | |
] | |
apply_filter_btn.click( | |
fn=update_analytics_plots, | |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], | |
outputs=analytics_plot_outputs, | |
show_progress="full" | |
) | |
# Also update analytics after sync | |
sync_click_event.then( | |
fn=update_analytics_plots, | |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], | |
outputs=analytics_plot_outputs, | |
show_progress="full" | |
) | |
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"): | |
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary") | |
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.") | |
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution") | |
refresh_mentions_display_btn.click( | |
fn=run_mentions_tab_display, inputs=[token_state], | |
outputs=[mentions_html, mentions_sentiment_dist_plot], | |
show_progress="full" | |
) | |
with gr.TabItem("4οΈβ£ Follower Stats", id="tab_follower_stats"): | |
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary") | |
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.") | |
with gr.Row(): | |
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains") | |
with gr.Row(): | |
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)") | |
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)") | |
refresh_follower_stats_btn.click( | |
fn=run_follower_stats_tab_display, inputs=[token_state], | |
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], | |
show_progress="full" | |
) | |
if __name__ == "__main__": | |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): | |
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.") | |
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \ | |
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \ | |
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR): | |
logging.warning("WARNING: Bubble environment variables not fully set.") | |
try: | |
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}") | |
except ImportError: | |
logging.error("Matplotlib is not installed. Plots will not be generated.") | |
app.launch(server_name="0.0.0.0", server_port=7860, debug=True) | |