Spaces:
Running
Running
File size: 23,160 Bytes
b560569 575b933 b0464a9 87a87e7 791c130 f7fc39b 575b933 791c130 4ad44b9 575b933 2a3b22e 575b933 9d99925 3b4dccb deb2291 3b4dccb b0464a9 2a3b22e 3b4dccb 2a3b22e 791c130 575b933 deb2291 791c130 3b4dccb a342a6b 575b933 deb2291 3b4dccb 348bc84 791c130 deb2291 791c130 3b4dccb 791c130 348bc84 791c130 3b4dccb 791c130 deb2291 3b4dccb deb2291 348bc84 3b4dccb 348bc84 3b4dccb 791c130 deb2291 791c130 3b4dccb deb2291 3b4dccb 348bc84 deb2291 791c130 575b933 791c130 3b4dccb a342a6b b0464a9 2a3b22e adb3bbe deb2291 179ea1f 67742c4 a342a6b 3b4dccb 348bc84 a342a6b 575b933 deb2291 348bc84 791c130 deb2291 67742c4 adb3bbe a342a6b 575b933 f9d8231 179ea1f a342a6b 575b933 0612e1d 4ad44b9 348bc84 0612e1d adb3bbe 791c130 a342a6b 0612e1d 575b933 a342a6b 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 791c130 0612e1d 575b933 791c130 0612e1d 575b933 791c130 4ad44b9 791c130 4ad44b9 a342a6b faf26ff 575b933 791c130 3b4dccb 791c130 3b4dccb 791c130 deb2291 791c130 3b902c0 791c130 3b4dccb 348bc84 3b4dccb deb2291 3b4dccb deb2291 3b4dccb deb2291 3b4dccb 791c130 3b4dccb 791c130 deb2291 348bc84 791c130 3b4dccb a342a6b adb3bbe 06d22e5 791c130 a342a6b 791c130 4ad44b9 348bc84 a342a6b 575b933 791c130 a342a6b 791c130 a342a6b 575b933 a342a6b 348bc84 a342a6b 538b42b 791c130 575b933 adb3bbe 575b933 791c130 575b933 791c130 a342a6b 575b933 a342a6b 791c130 a342a6b 791c130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot, generate_engagement_type_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot, # For initializing plots
# --- Import new plot functions ---
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Analytics Tab: Plot Update Function ---
def update_analytics_plots(token_state_value, date_filter_option, custom_start_date, custom_end_date):
"""
Prepares analytics data using external processing function and then generates plots.
"""
logging.info(f"Updating analytics plots. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
# --- Increased number of expected plots ---
num_expected_plots = 18 # Was 13, added 5 new plots
if not token_state_value or not token_state_value.get("token"):
message = "β Access denied. No token. Cannot generate analytics."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
# prepare_filtered_analytics_data might need to be updated if new DFs are required for new plots (e.g. comment sentiment)
# For now, we assume it returns the same set of DFs and new plots will try to use them or handle missing data.
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
# Hypothetical: If prepare_filtered_analytics_data was updated to return comment sentiment data:
# filtered_comments_with_sentiment_df = ... # (This would be the 7th item in the tuple)
# For now, we will pass filtered_merged_posts_df to generate_comments_sentiment_breakdown_plot,
# and that function will handle missing sentiment columns by showing a placeholder.
# Or, if you have comment sentiment data in another DataFrame in token_state, retrieve it here.
# e.g., comments_df_with_sentiment = token_state_value.get("bubble_comments_sentiment_df", pd.DataFrame())
except Exception as e:
error_msg = f"β Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
# config_date_col_followers_source = token_state_value.get("config_date_col_followers", "date")
logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.")
try:
# Existing plots
plot_posts_activity = generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts)
plot_engagement_type = generate_engagement_type_plot(filtered_merged_posts_df)
plot_mentions_activity = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
plot_mention_sentiment = generate_mention_sentiment_plot(filtered_mentions_df)
plot_followers_count = generate_followers_count_over_time_plot(
date_filtered_follower_stats_df,
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'
)
plot_followers_growth_rate = generate_followers_growth_rate_plot(
date_filtered_follower_stats_df,
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'
)
plot_followers_by_location = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_geo', plot_title="Followers by Location")
plot_followers_by_role = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_function', plot_title="Followers by Role")
plot_followers_by_industry = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_industry', plot_title="Followers by Industry")
plot_followers_by_seniority = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_seniority', plot_title="Followers by Seniority")
plot_engagement_rate = generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, engagement_rate_col='engagement')
plot_reach_over_time = generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, reach_col='clickCount')
plot_impressions_over_time = generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, impressions_col='impressionCount')
# --- Generate new plots ---
plot_likes_over_time = generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, likes_col='likeCount')
plot_clicks_over_time = generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, clicks_col='clickCount')
plot_shares_over_time = generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, shares_col='shareCount')
plot_comments_over_time = generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, comments_col='commentCount')
# For comment sentiment, pass a DataFrame that is expected to have comment-level sentiment.
# If `filtered_merged_posts_df` is passed and lacks 'comment_sentiment' column, the plot function will show a placeholder.
# If you have a specific df for this, e.g., `filtered_comments_with_sentiment_df` from `prepare_filtered_analytics_data` (if modified)
# or from `token_state_value.get("bubble_comments_sentiment_df")`, use that one.
# For this example, we assume `filtered_merged_posts_df` is passed and the plot function handles it.
plot_comments_sentiment_breakdown = generate_comments_sentiment_breakdown_plot(
filtered_merged_posts_df, # Or your specific df with comment sentiments
sentiment_column='sentiment' # Assuming 'sentiment' column in post_df might be a proxy, or change to 'comment_sentiment' if that column exists
# The plot function will show a placeholder if this column isn't suitable or found.
)
message = f"π Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
all_generated_plots = [
plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment,
plot_followers_count, plot_followers_growth_rate,
plot_followers_by_location, plot_followers_by_role, plot_followers_by_industry, plot_followers_by_seniority,
plot_engagement_rate, plot_reach_over_time, plot_impressions_over_time,
# --- Add new plot objects to the list ---
plot_likes_over_time, plot_clicks_over_time,
plot_shares_over_time, plot_comments_over_time,
plot_comments_sentiment_breakdown
]
num_plots_generated = sum(1 for p in all_generated_plots if p is not None and not isinstance(p, str))
logging.info(f"Successfully generated {num_plots_generated} plots out of {num_expected_plots} expected.")
# Ensure the number of returned plots matches num_expected_plots, padding with placeholders if necessary
# This is crucial if some plot functions might return None on error and we need to match the Gradio outputs list length
final_plots_list = []
for p in all_generated_plots:
if p is not None and not isinstance(p, str): # isinstance check for safety, though plots should be figs
final_plots_list.append(p)
else: # If a plot failed and returned None or an error string (which it shouldn't, should be placeholder fig)
logging.warning(f"A plot generation failed or returned unexpected type, using placeholder. Plot: {p}")
final_plots_list.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot."))
# If fewer plots were generated than expected (e.g. due to early exit or major error in a plot function)
while len(final_plots_list) < num_expected_plots:
logging.warning(f"Padding missing plot with placeholder. Expected {num_expected_plots}, got {len(final_plots_list)} so far.")
final_plots_list.append(create_placeholder_plot(title="Missing Plot", message="Plot could not be generated."))
if len(final_plots_list) > num_expected_plots + 5: # Safety break
logging.error("Too many placeholders added, breaking loop.")
break
return [message] + final_plots_list[:num_expected_plots] # Ensure correct number of outputs
except Exception as e:
error_msg = f"β Error generating analytics plots: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(),
"bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
# Consider adding "bubble_comments_sentiment_df": pd.DataFrame() if you plan to fetch this data
"fetch_count_for_api": 0,
"url_user_token_temp_storage": None,
"config_date_col_posts": "published_at",
"config_date_col_mentions": "date",
"config_date_col_followers": "date"
})
gr.Markdown("# π LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1οΈβ£ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
sync_click_event = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
).then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
).then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"):
gr.Markdown("## π LinkedIn Performance Analytics")
gr.Markdown("Select a date range to filter Posts and Mentions analytics. Follower demographic plots show overall latest data. Follower time-series plots respect the selected date range if applicable to their data source (e.g. monthly gains).")
analytics_status_md = gr.Markdown("Analytics status will appear here...")
with gr.Row():
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range (for Posts, Mentions, and some Follower time-series)",
value="Last 30 Days"
)
custom_start_date_picker = gr.DateTime(label="Start Date (Custom)", visible=False, include_time=False, type="datetime") # Changed to datetime
custom_end_date_picker = gr.DateTime(label="End Date (Custom)", visible=False, include_time=False, type="datetime") # Changed to datetime
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
gr.Markdown("### Posts & Engagement Overview (Filtered by Date)")
with gr.Row():
posts_activity_plot = gr.Plot(label="Posts Activity Over Time")
engagement_type_plot = gr.Plot(label="Post Engagement Types")
gr.Markdown("### Mentions Overview (Filtered by Date)")
with gr.Row():
mentions_activity_plot = gr.Plot(label="Mentions Activity Over Time")
mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution")
gr.Markdown("### Follower Dynamics")
with gr.Row():
followers_count_plot = gr.Plot(label="Followers Count Over Time (e.g., Monthly Gains)")
followers_growth_rate_plot = gr.Plot(label="Followers Growth Rate (e.g., Monthly Gains)")
gr.Markdown("### Follower Demographics (Overall Latest Data)")
with gr.Row():
followers_by_location_plot = gr.Plot(label="Followers by Location")
followers_by_role_plot = gr.Plot(label="Followers by Role (Function)")
with gr.Row():
followers_by_industry_plot = gr.Plot(label="Followers by Industry")
followers_by_seniority_plot = gr.Plot(label="Followers by Seniority")
gr.Markdown("### Post Performance Insights (Filtered by Date)")
with gr.Row():
engagement_rate_plot = gr.Plot(label="Engagement Rate Over Time")
reach_over_time_plot = gr.Plot(label="Reach Over Time (Clicks)") # This was originally in its own row
with gr.Row(): # Moved impressions to be paired with reach if desired, or keep separate
impressions_over_time_plot = gr.Plot(label="Impressions Over Time")
# New plots will start here, keeping 2 per row
likes_over_time_plot = gr.Plot(label="Reactions (Likes) Over Time")
gr.Markdown("### Detailed Post Engagement Over Time (Filtered by Date)")
with gr.Row():
clicks_over_time_plot = gr.Plot(label="Clicks Over Time")
shares_over_time_plot = gr.Plot(label="Shares Over Time")
with gr.Row():
comments_over_time_plot = gr.Plot(label="Comments Over Time")
# For the 5th new plot, "Breakdown of Comments by Sentiment"
# It will be alone in this row, or you can add another plot next to it later.
comments_sentiment_plot = gr.Plot(label="Breakdown of Comments by Sentiment")
analytics_plot_outputs = [
analytics_status_md, posts_activity_plot, engagement_type_plot,
mentions_activity_plot, mention_sentiment_plot,
followers_count_plot, followers_growth_rate_plot,
followers_by_location_plot, followers_by_role_plot,
followers_by_industry_plot, followers_by_seniority_plot,
engagement_rate_plot, reach_over_time_plot, impressions_over_time_plot,
# --- Add new plot components to the output list in the correct order ---
likes_over_time_plot, clicks_over_time_plot,
shares_over_time_plot, comments_over_time_plot,
comments_sentiment_plot
]
apply_filter_btn.click(
fn=update_analytics_plots,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=analytics_plot_outputs,
show_progress="full"
)
# Also update analytics after sync
sync_click_event.then(
fn=update_analytics_plots,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=analytics_plot_outputs,
show_progress="full"
)
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4οΈβ£ Follower Stats", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble environment variables not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|