Spaces:
Sleeping
Sleeping
# app/rag_system.py | |
from __future__ import annotations | |
import os | |
import re | |
from pathlib import Path | |
from typing import List, Tuple | |
import faiss | |
import numpy as np | |
# Prefer pypdf; fallback to PyPDF2 if needed | |
try: | |
from pypdf import PdfReader | |
except Exception: | |
from PyPDF2 import PdfReader # type: ignore | |
from sentence_transformers import SentenceTransformer | |
from ftfy import fix_text | |
# ---------------- Paths & Cache (HF-safe) ---------------- | |
ROOT_DIR = Path(os.getenv("APP_ROOT", "/app")) | |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data"))) | |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads"))) | |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index"))) | |
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache"))) | |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR): | |
d.mkdir(parents=True, exist_ok=True) | |
# ---------------- Config ---------------- | |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2") | |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower() | |
# ---------------- Helpers ---------------- | |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ") | |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE) | |
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç" | |
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b") | |
def _fix_intra_word_spaces(s: str) -> str: | |
# "H Ə F T Ə" -> "HƏFTƏ" | |
if not s: | |
return s | |
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s) | |
def _fix_mojibake(s: str) -> str: | |
# Try to undo latin-1/utf-8 mess, then ftfy as final pass | |
if not s: | |
return s | |
try: | |
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")): | |
s = s.encode("latin-1", "ignore").decode("utf-8", "ignore") | |
except Exception: | |
pass | |
s = fix_text(s) | |
s = _fix_intra_word_spaces(s) | |
return s | |
def _split_sentences(text: str) -> List[str]: | |
return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()] | |
def _mostly_numeric(s: str) -> bool: | |
alnum = [c for c in s if c.isalnum()] | |
if not alnum: | |
return True | |
digits = sum(c.isdigit() for c in alnum) | |
return digits / max(1, len(alnum)) > 0.3 | |
def _tabular_like(s: str) -> bool: | |
hits = len(NUM_TOKEN_RE.findall(s)) | |
return hits >= 2 or "Page" in s or len(s) < 20 | |
def _clean_for_summary(text: str) -> str: | |
out = [] | |
for ln in text.splitlines(): | |
t = " ".join(ln.split()) | |
t = _fix_mojibake(t) | |
if not t or _mostly_numeric(t) or _tabular_like(t): | |
continue | |
out.append(t) | |
return " ".join(out) | |
def _sim_jaccard(a: str, b: str) -> float: | |
aw = set(a.lower().split()); bw = set(b.lower().split()) | |
if not aw or not bw: | |
return 0.0 | |
return len(aw & bw) / len(aw | bw) | |
STOPWORDS = { | |
"the","a","an","and","or","of","to","in","on","for","with","by", | |
"this","that","these","those","is","are","was","were","be","been","being", | |
"at","as","it","its","from","into","about","over","after","before","than", | |
"such","can","could","should","would","may","might","will","shall" | |
} | |
def _keywords(text: str) -> List[str]: | |
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower()) | |
return [t for t in toks if t not in STOPWORDS and len(t) > 2] | |
def _looks_azerbaijani(s: str) -> bool: | |
has_az = any(ch in AZ_CHARS for ch in s) | |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s)) | |
return has_az or non_ascii_ratio > 0.15 | |
# ---- Descoped/out-of-scope heuristics ---- | |
DESCOPED_KWS = [ | |
"descoped","out of scope","out-of-scope","exclude","excluded","exclusion", | |
"çıxarılan","çıxarıl","çıxarıldı","daxil deyil","sökül","demontaj","kəsilmə", | |
] | |
def _descoped_mode(question: str) -> bool: | |
ql = (question or "").lower() | |
return any(k in ql for k in DESCOPED_KWS) or "descop" in ql | |
def _is_descoped_line(s: str) -> bool: | |
sl = s.lower() | |
if any(k in sl for k in DESCOPED_KWS): | |
return True | |
return bool(re.search(r"\b(out[-\s]?of[-\s]?scope|descop)", sl)) | |
# ---------------- RAG Core ---------------- | |
class SimpleRAG: | |
def __init__( | |
self, | |
index_path: Path = INDEX_DIR / "faiss.index", | |
meta_path: Path = INDEX_DIR / "meta.npy", | |
model_name: str = MODEL_NAME, | |
cache_dir: Path = CACHE_DIR, | |
): | |
self.index_path = Path(index_path) | |
self.meta_path = Path(meta_path) | |
self.model_name = model_name | |
self.cache_dir = Path(cache_dir) | |
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir)) | |
self.embed_dim = int(self.model.get_sentence_embedding_dimension()) | |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim) | |
self.chunks: List[str] = [] | |
self.last_added: List[str] = [] | |
self._translator = None # lazy | |
self._load() | |
# ---------- Persistence ---------- | |
def _load(self) -> None: | |
if self.meta_path.exists(): | |
try: | |
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist() | |
except Exception: | |
self.chunks = [] | |
if self.index_path.exists(): | |
try: | |
idx = faiss.read_index(str(self.index_path)) | |
if getattr(idx, "d", None) == self.embed_dim: | |
self.index = idx | |
except Exception: | |
pass | |
def _persist(self) -> None: | |
faiss.write_index(self.index, str(self.index_path)) | |
np.save(self.meta_path, np.array(self.chunks, dtype=object)) | |
# ---------- Utilities ---------- | |
def is_empty(self) -> bool: | |
return getattr(self.index, "ntotal", 0) == 0 or not self.chunks | |
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]: | |
reader = PdfReader(str(pdf_path)) | |
pages: List[str] = [] | |
for p in reader.pages: | |
t = p.extract_text() or "" | |
t = _fix_mojibake(t) | |
if t.strip(): | |
pages.append(t) | |
chunks: List[str] = [] | |
for txt in pages: | |
for i in range(0, len(txt), step): | |
part = txt[i : i + step].strip() | |
if part: | |
chunks.append(part) | |
return chunks | |
# ---------- Indexing ---------- | |
def add_pdf(self, pdf_path: Path) -> int: | |
texts = self._pdf_to_texts(pdf_path) | |
if not texts: | |
return 0 | |
emb = self.model.encode( | |
texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False | |
) | |
self.index.add(emb.astype(np.float32)) | |
self.chunks.extend(texts) | |
self.last_added = texts[:] | |
self._persist() | |
return len(texts) | |
# ---------- Search ---------- | |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]: | |
if self.is_empty: | |
return [] | |
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
k = max(1, min(int(k or 5), getattr(self.index, "ntotal", 1))) | |
D, I = self.index.search(q, k) | |
out: List[Tuple[str, float]] = [] | |
if I.size > 0 and self.chunks: | |
for idx, score in zip(I[0], D[0]): | |
if 0 <= idx < len(self.chunks): | |
out.append((self.chunks[idx], float(score))) | |
return out | |
# ---------- Translation (optional) ---------- | |
def _translate_to_en(self, texts: List[str]) -> List[str]: | |
if not texts: | |
return texts | |
try: | |
from transformers import pipeline | |
if self._translator is None: | |
self._translator = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-az-en", | |
cache_dir=str(self.cache_dir), | |
device=-1, | |
) | |
outs = self._translator(texts, max_length=400) | |
return [fix_text(o["translation_text"].strip()) for o in outs] | |
except Exception: | |
return texts | |
# ---------- Fallbacks ---------- | |
def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4, allow_numeric: bool = False) -> List[str]: | |
qk = set(_keywords(question)) | |
if not qk: | |
return [] | |
candidates: List[Tuple[float, str]] = [] | |
for text in pool[:400]: | |
cleaned = _fix_mojibake(" ".join(text.split())) | |
for s in _split_sentences(cleaned): | |
if not allow_numeric: | |
if _tabular_like(s) or _mostly_numeric(s): | |
continue | |
toks = set(_keywords(s)) | |
if not toks: | |
continue | |
overlap = len(qk & toks) | |
if overlap == 0 and not _is_descoped_line(s): | |
continue | |
length_penalty = max(6, min(60, len(s.split()))) | |
score = overlap + (0.3 if _is_descoped_line(s) else 0.0) + min(0.5, overlap / length_penalty) | |
candidates.append((score, s)) | |
candidates.sort(key=lambda x: x[0], reverse=True) | |
out: List[str] = [] | |
for _, s in candidates: | |
s = fix_text(s).strip() | |
if any(_sim_jaccard(s, t) >= 0.82 for t in out): | |
continue | |
out.append(s) | |
if len(out) >= limit_sentences: | |
break | |
return out | |
# ---------- Answer Synthesis ---------- | |
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str: | |
if not contexts and self.is_empty: | |
return "No relevant context found. Index is empty — upload a PDF first." | |
desc_mode = _descoped_mode(question) | |
# Build candidate sentences from nearby contexts | |
local_pool: List[str] = [] | |
scan_n = 8 if desc_mode else 5 | |
for c in (contexts or [])[:scan_n]: | |
cleaned = _fix_mojibake(" ".join(c.split())) | |
for s in _split_sentences(cleaned): | |
w = s.split() | |
if not ( (6 if desc_mode else 8) <= len(w) <= (60 if desc_mode else 35) ): | |
continue | |
if not desc_mode: | |
if _tabular_like(s) or _mostly_numeric(s): | |
continue | |
else: | |
# allow numeric/tabular if it looks like descoped line | |
if not _is_descoped_line(s) and (_tabular_like(s) or _mostly_numeric(s)): | |
continue | |
local_pool.append(" ".join(w)) | |
selected: List[str] = [] | |
if local_pool: | |
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
cand_emb = self.model.encode(local_pool, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
scores = (cand_emb @ q_emb.T).ravel() | |
order = np.argsort(-scores) | |
for i in order: | |
s = fix_text(local_pool[i]).strip() | |
if any(_sim_jaccard(s, t) >= 0.82 for t in selected): | |
continue | |
selected.append(s) | |
if len(selected) >= max_sentences: | |
break | |
if not selected: | |
selected = self._keyword_fallback( | |
question, | |
self.chunks, | |
limit_sentences=max_sentences, | |
allow_numeric=desc_mode, # relax numeric filter for descoped Qs | |
) | |
if not selected: | |
return "No readable sentences matched the question. Try a more specific query." | |
# Translate to EN if needed (and requested) | |
if OUTPUT_LANG == "en": | |
needs_tr = any(_looks_azerbaijani(s) for s in selected) or any(ch in "".join(selected) for ch in ("Ã","Ä","Þ")) | |
if needs_tr: | |
selected = self._translate_to_en(selected) | |
bullets = "\n".join(f"- {s}" for s in selected) | |
return f"Answer (based on document context):\n{bullets}" | |
__all__ = ["SimpleRAG", "UPLOAD_DIR", "INDEX_DIR"] | |