Spaces:
Sleeping
Sleeping
File size: 12,206 Bytes
64fd9b7 edc48fd 833b4d4 64fd9b7 9dc7698 edc48fd 64fd9b7 833b4d4 0a78f5f 833b4d4 4448508 833b4d4 edc48fd 4448508 64fd9b7 4448508 0a78f5f cf92f2c 4448508 cf92f2c 0a78f5f edc48fd 4448508 64fd9b7 a46e32d 4448508 6b6b475 9dc7698 0a78f5f 4448508 0a78f5f 4448508 0a78f5f ebbe4db 4448508 ebbe4db 833b4d4 ebbe4db 4448508 833b4d4 a46e32d 833b4d4 4448508 ebbe4db 6b6b475 ebbe4db 4448508 1fb5688 ebbe4db 6b6b475 4448508 6b6b475 4448508 833b4d4 6b6b475 edc48fd 4448508 0a78f5f 4448508 0a78f5f 4448508 64fd9b7 edc48fd 833b4d4 edc48fd 6b6b475 64fd9b7 40a908e 4448508 833b4d4 64fd9b7 833b4d4 edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 6b6b475 edc48fd 6b6b475 64fd9b7 edc48fd 64fd9b7 833b4d4 64fd9b7 833b4d4 6b6b475 833b4d4 4448508 0a78f5f 833b4d4 edc48fd 833b4d4 1fb5688 833b4d4 1fb5688 64fd9b7 833b4d4 64fd9b7 833b4d4 edc48fd 64fd9b7 833b4d4 64fd9b7 833b4d4 64fd9b7 833b4d4 edc48fd ebbe4db 833b4d4 ebbe4db edc48fd 64fd9b7 ebbe4db 64fd9b7 833b4d4 6b6b475 833b4d4 4448508 6b6b475 833b4d4 4448508 833b4d4 4448508 833b4d4 4448508 833b4d4 4448508 833b4d4 4448508 833b4d4 4448508 833b4d4 88d2e91 833b4d4 f06409c 833b4d4 4448508 833b4d4 4448508 833b4d4 4448508 833b4d4 f06409c 4448508 6b6b475 4448508 833b4d4 ebbe4db 833b4d4 4448508 833b4d4 ebbe4db 833b4d4 4448508 0a78f5f 833b4d4 ebbe4db 4448508 f06409c a46e32d ebbe4db edc48fd 4448508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# app/rag_system.py
from __future__ import annotations
import os
import re
from pathlib import Path
from typing import List, Tuple
import faiss
import numpy as np
# Prefer pypdf; fallback to PyPDF2 if needed
try:
from pypdf import PdfReader
except Exception:
from PyPDF2 import PdfReader # type: ignore
from sentence_transformers import SentenceTransformer
from ftfy import fix_text
# ---------------- Paths & Cache (HF-safe) ----------------
ROOT_DIR = Path(os.getenv("APP_ROOT", "/app"))
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
d.mkdir(parents=True, exist_ok=True)
# ---------------- Config ----------------
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
# ---------------- Helpers ----------------
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
def _fix_intra_word_spaces(s: str) -> str:
# "H Ə F T Ə" -> "HƏFTƏ"
if not s:
return s
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s)
def _fix_mojibake(s: str) -> str:
# Try to undo latin-1/utf-8 mess, then ftfy as final pass
if not s:
return s
try:
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
s = s.encode("latin-1", "ignore").decode("utf-8", "ignore")
except Exception:
pass
s = fix_text(s)
s = _fix_intra_word_spaces(s)
return s
def _split_sentences(text: str) -> List[str]:
return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()]
def _mostly_numeric(s: str) -> bool:
alnum = [c for c in s if c.isalnum()]
if not alnum:
return True
digits = sum(c.isdigit() for c in alnum)
return digits / max(1, len(alnum)) > 0.3
def _tabular_like(s: str) -> bool:
hits = len(NUM_TOKEN_RE.findall(s))
return hits >= 2 or "Page" in s or len(s) < 20
def _clean_for_summary(text: str) -> str:
out = []
for ln in text.splitlines():
t = " ".join(ln.split())
t = _fix_mojibake(t)
if not t or _mostly_numeric(t) or _tabular_like(t):
continue
out.append(t)
return " ".join(out)
def _sim_jaccard(a: str, b: str) -> float:
aw = set(a.lower().split()); bw = set(b.lower().split())
if not aw or not bw:
return 0.0
return len(aw & bw) / len(aw | bw)
STOPWORDS = {
"the","a","an","and","or","of","to","in","on","for","with","by",
"this","that","these","those","is","are","was","were","be","been","being",
"at","as","it","its","from","into","about","over","after","before","than",
"such","can","could","should","would","may","might","will","shall"
}
def _keywords(text: str) -> List[str]:
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower())
return [t for t in toks if t not in STOPWORDS and len(t) > 2]
def _looks_azerbaijani(s: str) -> bool:
has_az = any(ch in AZ_CHARS for ch in s)
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
return has_az or non_ascii_ratio > 0.15
# ---- Descoped/out-of-scope heuristics ----
DESCOPED_KWS = [
"descoped","out of scope","out-of-scope","exclude","excluded","exclusion",
"çıxarılan","çıxarıl","çıxarıldı","daxil deyil","sökül","demontaj","kəsilmə",
]
def _descoped_mode(question: str) -> bool:
ql = (question or "").lower()
return any(k in ql for k in DESCOPED_KWS) or "descop" in ql
def _is_descoped_line(s: str) -> bool:
sl = s.lower()
if any(k in sl for k in DESCOPED_KWS):
return True
return bool(re.search(r"\b(out[-\s]?of[-\s]?scope|descop)", sl))
# ---------------- RAG Core ----------------
class SimpleRAG:
def __init__(
self,
index_path: Path = INDEX_DIR / "faiss.index",
meta_path: Path = INDEX_DIR / "meta.npy",
model_name: str = MODEL_NAME,
cache_dir: Path = CACHE_DIR,
):
self.index_path = Path(index_path)
self.meta_path = Path(meta_path)
self.model_name = model_name
self.cache_dir = Path(cache_dir)
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir))
self.embed_dim = int(self.model.get_sentence_embedding_dimension())
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
self.chunks: List[str] = []
self.last_added: List[str] = []
self._translator = None # lazy
self._load()
# ---------- Persistence ----------
def _load(self) -> None:
if self.meta_path.exists():
try:
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist()
except Exception:
self.chunks = []
if self.index_path.exists():
try:
idx = faiss.read_index(str(self.index_path))
if getattr(idx, "d", None) == self.embed_dim:
self.index = idx
except Exception:
pass
def _persist(self) -> None:
faiss.write_index(self.index, str(self.index_path))
np.save(self.meta_path, np.array(self.chunks, dtype=object))
# ---------- Utilities ----------
@property
def is_empty(self) -> bool:
return getattr(self.index, "ntotal", 0) == 0 or not self.chunks
@staticmethod
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]:
reader = PdfReader(str(pdf_path))
pages: List[str] = []
for p in reader.pages:
t = p.extract_text() or ""
t = _fix_mojibake(t)
if t.strip():
pages.append(t)
chunks: List[str] = []
for txt in pages:
for i in range(0, len(txt), step):
part = txt[i : i + step].strip()
if part:
chunks.append(part)
return chunks
# ---------- Indexing ----------
def add_pdf(self, pdf_path: Path) -> int:
texts = self._pdf_to_texts(pdf_path)
if not texts:
return 0
emb = self.model.encode(
texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False
)
self.index.add(emb.astype(np.float32))
self.chunks.extend(texts)
self.last_added = texts[:]
self._persist()
return len(texts)
# ---------- Search ----------
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
if self.is_empty:
return []
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
k = max(1, min(int(k or 5), getattr(self.index, "ntotal", 1)))
D, I = self.index.search(q, k)
out: List[Tuple[str, float]] = []
if I.size > 0 and self.chunks:
for idx, score in zip(I[0], D[0]):
if 0 <= idx < len(self.chunks):
out.append((self.chunks[idx], float(score)))
return out
# ---------- Translation (optional) ----------
def _translate_to_en(self, texts: List[str]) -> List[str]:
if not texts:
return texts
try:
from transformers import pipeline
if self._translator is None:
self._translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-az-en",
cache_dir=str(self.cache_dir),
device=-1,
)
outs = self._translator(texts, max_length=400)
return [fix_text(o["translation_text"].strip()) for o in outs]
except Exception:
return texts
# ---------- Fallbacks ----------
def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4, allow_numeric: bool = False) -> List[str]:
qk = set(_keywords(question))
if not qk:
return []
candidates: List[Tuple[float, str]] = []
for text in pool[:400]:
cleaned = _fix_mojibake(" ".join(text.split()))
for s in _split_sentences(cleaned):
if not allow_numeric:
if _tabular_like(s) or _mostly_numeric(s):
continue
toks = set(_keywords(s))
if not toks:
continue
overlap = len(qk & toks)
if overlap == 0 and not _is_descoped_line(s):
continue
length_penalty = max(6, min(60, len(s.split())))
score = overlap + (0.3 if _is_descoped_line(s) else 0.0) + min(0.5, overlap / length_penalty)
candidates.append((score, s))
candidates.sort(key=lambda x: x[0], reverse=True)
out: List[str] = []
for _, s in candidates:
s = fix_text(s).strip()
if any(_sim_jaccard(s, t) >= 0.82 for t in out):
continue
out.append(s)
if len(out) >= limit_sentences:
break
return out
# ---------- Answer Synthesis ----------
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str:
if not contexts and self.is_empty:
return "No relevant context found. Index is empty — upload a PDF first."
desc_mode = _descoped_mode(question)
# Build candidate sentences from nearby contexts
local_pool: List[str] = []
scan_n = 8 if desc_mode else 5
for c in (contexts or [])[:scan_n]:
cleaned = _fix_mojibake(" ".join(c.split()))
for s in _split_sentences(cleaned):
w = s.split()
if not ( (6 if desc_mode else 8) <= len(w) <= (60 if desc_mode else 35) ):
continue
if not desc_mode:
if _tabular_like(s) or _mostly_numeric(s):
continue
else:
# allow numeric/tabular if it looks like descoped line
if not _is_descoped_line(s) and (_tabular_like(s) or _mostly_numeric(s)):
continue
local_pool.append(" ".join(w))
selected: List[str] = []
if local_pool:
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
cand_emb = self.model.encode(local_pool, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
scores = (cand_emb @ q_emb.T).ravel()
order = np.argsort(-scores)
for i in order:
s = fix_text(local_pool[i]).strip()
if any(_sim_jaccard(s, t) >= 0.82 for t in selected):
continue
selected.append(s)
if len(selected) >= max_sentences:
break
if not selected:
selected = self._keyword_fallback(
question,
self.chunks,
limit_sentences=max_sentences,
allow_numeric=desc_mode, # relax numeric filter for descoped Qs
)
if not selected:
return "No readable sentences matched the question. Try a more specific query."
# Translate to EN if needed (and requested)
if OUTPUT_LANG == "en":
needs_tr = any(_looks_azerbaijani(s) for s in selected) or any(ch in "".join(selected) for ch in ("Ã","Ä","Þ"))
if needs_tr:
selected = self._translate_to_en(selected)
bullets = "\n".join(f"- {s}" for s in selected)
return f"Answer (based on document context):\n{bullets}"
__all__ = ["SimpleRAG", "UPLOAD_DIR", "INDEX_DIR"]
|