File size: 6,672 Bytes
555c12b
 
 
 
 
 
 
 
 
 
 
 
 
 
e394afd
555c12b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36cce4f
555c12b
 
1692a17
36cce4f
 
 
 
 
 
555c12b
 
 
 
e394afd
555c12b
 
36cce4f
 
555c12b
 
 
36cce4f
 
555c12b
 
e394afd
555c12b
 
 
 
 
 
 
 
 
36cce4f
555c12b
 
 
 
 
 
 
 
 
e394afd
555c12b
 
 
 
 
 
 
 
e394afd
 
 
 
 
 
 
 
 
 
 
 
8b420fe
 
 
e394afd
555c12b
 
 
e394afd
 
 
 
 
 
 
 
 
 
 
555c12b
 
 
 
 
e394afd
 
 
 
 
555c12b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
os.environ["HF_HOME"] = "/tmp/hf-home"

import nltk
nltk.download("punkt", download_dir="/tmp/nltk_data")

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from nltk.tokenize import sent_tokenize
from transformers import pipeline
import numpy as np
import logging
import re

# === Pipelines ===
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)

# === Brief Summarization ===
def summarize_review(text, max_len=80, min_len=20):
    try:
        return summarizer(text, max_length=max_len, min_length=min_len, do_sample=False)[0]["summary_text"]
    except Exception as e:
        logging.warning(f"Summarization fallback used: {e}")
        return text

# === Smart Summarization with Clustering ===
def smart_summarize(text, n_clusters=1):
    try:
        sentences = sent_tokenize(text)
        if len(sentences) <= 1:
            return text
        tfidf = TfidfVectorizer(stop_words="english")
        tfidf_matrix = tfidf.fit_transform(sentences)
        if len(sentences) <= n_clusters:
            return " ".join(sentences)
        kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix)
        summary_sentences = []
        for i in range(n_clusters):
            idx = np.where(kmeans.labels_ == i)[0]
            if not len(idx):
                continue
            avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0))
            sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray())
            most_representative = sentences[idx[np.argmax(sim)]]
            summary_sentences.append(most_representative)
        return " ".join(sorted(summary_sentences, key=sentences.index))
    except Exception as e:
        logging.error(f"Smart summarize error: {e}")
        return text

# === Emotion Detection (Fixed) ===
def detect_emotion(text):
    try:
        result = emotion_pipeline(text)
        if isinstance(result, list) and len(result) > 0:
            item = result[0]
            if isinstance(item, list):  # Nested list case
                return item[0]["label"]
            return item["label"]
        return "neutral"
    except Exception as e:
        logging.warning(f"Emotion detection failed: {e}")
        return "neutral"

# === Follow-up Q&A ===
def answer_followup(text, question, verbosity="brief"):
    try:
        if not question:
            return "No question provided."
        if isinstance(question, list):
            answers = []
            for q in question:
                if not q.strip():
                    continue
                response = qa_pipeline({"question": q, "context": text})
                ans = response.get("answer", "")
                answers.append(f"**{q}** → {ans}" if verbosity.lower() == "detailed" else ans)
            return answers
        else:
            response = qa_pipeline({"question": question, "context": text})
            ans = response.get("answer", "")
            return f"**{question}** → {ans}" if verbosity.lower() == "detailed" else ans
    except Exception as e:
        logging.warning(f"Follow-up error: {e}")
        return "Sorry, I couldn't generate a follow-up answer."

# === Direct follow-up route handler ===
def answer_only(text, question):
    try:
        if not question:
            return "No question provided."
        return qa_pipeline({"question": question, "context": text}).get("answer", "No answer found.")
    except Exception as e:
        logging.warning(f"Answer-only failed: {e}")
        return "Q&A failed."

# === Explanation Generator ===
def generate_explanation(text):
    try:
        explanation = summarizer(text, max_length=60, min_length=20, do_sample=False)[0]["summary_text"]
        return f"🧠 This review can be explained as: {explanation}"
    except Exception as e:
        logging.warning(f"Explanation failed: {e}")
        return "⚠️ Explanation could not be generated."

# === Churn Risk Estimator ===
def assess_churn_risk(sentiment_label, emotion_label):
    if sentiment_label.lower() == "negative" and emotion_label.lower() in ["anger", "fear", "sadness", "frustrated"]:
        return "High Risk"
    return "Low Risk"

# === Pain Point Extractor ===
def extract_pain_points(text):
    common_issues = [
        "slow", "crash", "lag", "expensive", "confusing", "noisy", "poor", "rude",
        "unhelpful", "bug", "broken", "unresponsive", "not working", "error", "delay", "disconnect"
    ]
    text_lower = text.lower()
    matches = [kw for kw in common_issues if re.search(rf"\b{kw}\b", text_lower)]
    return list(set(matches))[:5]

# === Industry Detector ===
def detect_industry(text):
    text = text.lower()
    if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]): return "Healthcare"
    if any(k in text for k in ["flight", "hotel", "trip", "booking"]): return "Travel"
    if any(k in text for k in ["bank", "loan", "credit", "payment"]): return "Banking"
    if any(k in text for k in ["gym", "trainer", "fitness", "workout"]): return "Fitness"
    if any(k in text for k in ["movie", "series", "stream", "video"]): return "Entertainment"
    if any(k in text for k in ["game", "gaming", "console"]): return "Gaming"
    if any(k in text for k in ["food", "delivery", "restaurant", "order"]): return "Food Delivery"
    if any(k in text for k in ["school", "university", "teacher", "course"]): return "Education"
    if any(k in text for k in ["insurance", "policy", "claim"]): return "Insurance"
    if any(k in text for k in ["property", "rent", "apartment", "house"]): return "Real Estate"
    if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]): return "E-commerce"
    return "Generic"

# === Product Category Detector ===
def detect_product_category(text):
    text = text.lower()
    if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]): return "Mobile Devices"
    if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]): return "Laptops"
    if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]): return "Home Appliances"
    if any(k in text for k in ["watch", "band", "fitbit", "wearable"]): return "Wearables"
    if any(k in text for k in ["app", "portal", "site", "website"]): return "Web App"
    return "General"