|
import gradio as gr |
|
import os |
|
import torch |
|
import logging |
|
import soundfile as sf |
|
from kokoro import KModel, KPipeline |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
VOICE_DIR = os.path.join(os.path.dirname(__file__), "voices") |
|
OUTPUT_DIR = os.path.join(os.path.dirname(__file__), "output_audio") |
|
TEXT = "Hello, this is a test of the Kokoro TTS system." |
|
|
|
|
|
os.makedirs(VOICE_DIR, exist_ok=True) |
|
os.makedirs(OUTPUT_DIR, exist_ok=True) |
|
|
|
|
|
CUDA_AVAILABLE = torch.cuda.is_available() |
|
device = "cuda" if CUDA_AVAILABLE else "cpu" |
|
logger.info(f"Using hardware: {device}") |
|
|
|
|
|
model = KModel("hexgrad/Kokoro-82M").to(device).eval() |
|
|
|
|
|
pipelines = { |
|
'a': KPipeline(model=model, lang_code='a', device=device), |
|
'b': KPipeline(model=model, lang_code='b', device=device) |
|
} |
|
|
|
|
|
try: |
|
pipelines["a"].g2p.lexicon.golds["kokoro"] = "kหOkษษนO" |
|
pipelines["b"].g2p.lexicon.golds["kokoro"] = "kหQkษษนQ" |
|
except AttributeError as e: |
|
logger.warning(f"Could not set custom pronunciations: {e}") |
|
|
|
def generate_first(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE): |
|
voice_path = os.path.join(VOICE_DIR, voice) |
|
if not os.path.exists(voice_path): |
|
raise FileNotFoundError(f"Voice file not found: {voice_path}") |
|
|
|
pipeline = pipelines[voice[0]] |
|
use_gpu = use_gpu and CUDA_AVAILABLE |
|
try: |
|
generator = pipeline(text, voice=voice_path, speed=speed) |
|
for _, ps, audio in generator: |
|
return (24000, audio.numpy()), ps |
|
except gr.exceptions.Error as e: |
|
if use_gpu: |
|
gr.Warning(str(e)) |
|
gr.Info("Retrying with CPU. To avoid this error, change Hardware to CPU.") |
|
model.to("cpu") |
|
generator = pipeline(text, voice=voice_path, speed=speed) |
|
for _, ps, audio in generator: |
|
return (24000, audio.numpy()), ps |
|
else: |
|
raise gr.Error(e) |
|
return None, "" |
|
|
|
def tokenize_first(text, voice="af_bella.pt"): |
|
voice_path = os.path.join(VOICE_DIR, voice) |
|
if not os.path.exists(voice_path): |
|
raise FileNotFoundError(f"Voice file not found: {voice_path}") |
|
|
|
pipeline = pipelines[voice[0]] |
|
generator = pipeline(text, voice=voice_path) |
|
for _, ps, _ in generator: |
|
return ps |
|
return "" |
|
|
|
def generate_all(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE): |
|
voice_path = os.path.join(VOICE_DIR, voice) |
|
if not os.path.exists(voice_path): |
|
raise FileNotFoundError(f"Voice file not found: {voice_path}") |
|
|
|
pipeline = pipelines[voice[0]] |
|
use_gpu = use_gpu and CUDA_AVAILABLE |
|
first = True |
|
if not use_gpu: |
|
model.to("cpu") |
|
generator = pipeline(text, voice=voice_path, speed=speed) |
|
for _, _, audio in generator: |
|
yield 24000, audio.numpy() |
|
if first: |
|
first = False |
|
yield 24000, torch.zeros(1).numpy() |
|
|
|
|
|
def load_voice_choices(): |
|
voice_files = [f for f in os.listdir(VOICE_DIR) if f.endswith('.pt')] |
|
choices = {} |
|
for voice_file in voice_files: |
|
prefix = voice_file[:2] |
|
if prefix == 'af': |
|
label = f"๐บ๐ธ ๐บ {voice_file[3:-3].capitalize()}" |
|
elif prefix == 'am': |
|
label = f"๐บ๐ธ ๐น {voice_file[3:-3].capitalize()}" |
|
elif prefix == 'bf': |
|
label = f"๐ฌ๐ง ๐บ {voice_file[3:-3].capitalize()}" |
|
elif prefix == 'bm': |
|
label = f"๐ฌ๐ง ๐น {voice_file[3:-3].capitalize()}" |
|
else: |
|
label = f"Unknown {voice_file[:-3]}" |
|
choices[label] = voice_file |
|
return choices |
|
|
|
CHOICES = load_voice_choices() |
|
|
|
|
|
for label, voice_path in CHOICES.items(): |
|
full_path = os.path.join(VOICE_DIR, voice_path) |
|
if not os.path.exists(full_path): |
|
logger.warning(f"Voice file not found: {full_path}") |
|
else: |
|
logger.info(f"Loaded voice: {label} ({voice_path})") |
|
|
|
|
|
if not CHOICES: |
|
logger.warning("No voice files found in VOICE_DIR. Adding a placeholder.") |
|
CHOICES = {"๐บ๐ธ ๐บ Bella ๐ฅ": "af_bella.pt"} |
|
|
|
TOKEN_NOTE = ''' |
|
๐ก Customize pronunciation with Markdown link syntax and /slashes/ like [Kokoro](/kหOkษษนO/) |
|
|
|
๐ฌ To adjust intonation, try punctuation ;:,.!?โโฆ"()โโ or stress ห and ห |
|
|
|
โฌ๏ธ Lower stress [1 level](-1) or [2 levels](-2) |
|
|
|
โฌ๏ธ Raise stress 1 level [or](+2) 2 levels (only works on less stressed, usually short words) |
|
''' |
|
|
|
with gr.Blocks() as generate_tab: |
|
out_audio = gr.Audio(label="Output Audio", interactive=False, streaming=False, autoplay=True) |
|
generate_btn = gr.Button("Generate", variant="primary") |
|
with gr.Accordion("Output Tokens", open=True): |
|
out_ps = gr.Textbox(interactive=False, show_label=False, |
|
info="Tokens used to generate the audio, up to 510 context length.") |
|
tokenize_btn = gr.Button("Tokenize", variant="secondary") |
|
gr.Markdown(TOKEN_NOTE) |
|
|
|
with gr.Blocks() as stream_tab: |
|
out_stream = gr.Audio(label="Output Audio Stream", interactive=False, streaming=True, autoplay=True) |
|
with gr.Row(): |
|
stream_btn = gr.Button("Stream", variant="primary") |
|
stop_btn = gr.Button("Stop", variant="stop") |
|
with gr.Accordion("Note", open=True): |
|
gr.Markdown("โ ๏ธ There may be delays in streaming audio due to processing limitations.") |
|
|
|
with gr.Blocks() as app: |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.Textbox(label="Input Text", info="Arbitrarily many characters supported") |
|
with gr.Row(): |
|
voice = gr.Dropdown(list(CHOICES.items()), value="af_bella.pt" if "af_bella.pt" in CHOICES.values() else list(CHOICES.values())[0], label="Voice", |
|
info="Quality and availability vary by language") |
|
use_gpu = gr.Dropdown( |
|
[("GPU ๏ฟฝ-held", True), ("CPU ๐", False)], |
|
value=CUDA_AVAILABLE, |
|
label="Hardware", |
|
info="GPU is usually faster, but may require CUDA support", |
|
interactive=CUDA_AVAILABLE |
|
) |
|
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed") |
|
with gr.Column(): |
|
gr.TabbedInterface([generate_tab, stream_tab], ["Generate", "Stream"]) |
|
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], |
|
outputs=[out_audio, out_ps]) |
|
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps]) |
|
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream]) |
|
stop_btn.click(fn=None, cancels=[stream_event]) |
|
|
|
if __name__ == "__main__": |
|
app.queue().launch() |