File size: 7,065 Bytes
98c217d ee617da 98c217d fa5c1e1 1509739 799287a 98c217d fa5c1e1 98c217d 5dda1a8 db34aa6 98c217d 1509739 98c217d 1509739 98c217d db34aa6 98c217d 1509739 98c217d db34aa6 1509739 98c217d fa5c1e1 98c217d fa5c1e1 db34aa6 fa5c1e1 db34aa6 fa5c1e1 92ccd47 db34aa6 fa5c1e1 98c217d db34aa6 98c217d db34aa6 21977f5 db34aa6 21977f5 db34aa6 21977f5 db34aa6 21977f5 db34aa6 21977f5 db34aa6 92ccd47 db34aa6 fa5c1e1 976f3b9 db34aa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
import os
import torch
import logging
import soundfile as sf
from kokoro import KModel, KPipeline
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
VOICE_DIR = os.path.join(os.path.dirname(__file__), "voices")
OUTPUT_DIR = os.path.join(os.path.dirname(__file__), "output_audio")
TEXT = "Hello, this is a test of the Kokoro TTS system."
# Ensure directories exist
os.makedirs(VOICE_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Device setup
CUDA_AVAILABLE = torch.cuda.is_available()
device = "cuda" if CUDA_AVAILABLE else "cpu"
logger.info(f"Using hardware: {device}")
# Load a single model instance
model = KModel("hexgrad/Kokoro-82M").to(device).eval()
# Define pipelines for American ('a') and British ('b') English
pipelines = {
'a': KPipeline(model=model, lang_code='a', device=device), # American English
'b': KPipeline(model=model, lang_code='b', device=device) # British English
}
# Set custom pronunciations for "kokoro"
try:
pipelines["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
pipelines["b"].g2p.lexicon.golds["kokoro"] = "kˈQkəɹQ"
except AttributeError as e:
logger.warning(f"Could not set custom pronunciations: {e}")
def generate_first(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
voice_path = os.path.join(VOICE_DIR, voice)
if not os.path.exists(voice_path):
raise FileNotFoundError(f"Voice file not found: {voice_path}")
pipeline = pipelines[voice[0]]
use_gpu = use_gpu and CUDA_AVAILABLE
try:
generator = pipeline(text, voice=voice_path, speed=speed)
for _, ps, audio in generator:
return (24000, audio.numpy()), ps
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info("Retrying with CPU. To avoid this error, change Hardware to CPU.")
model.to("cpu")
generator = pipeline(text, voice=voice_path, speed=speed)
for _, ps, audio in generator:
return (24000, audio.numpy()), ps
else:
raise gr.Error(e)
return None, ""
def tokenize_first(text, voice="af_bella.pt"):
voice_path = os.path.join(VOICE_DIR, voice)
if not os.path.exists(voice_path):
raise FileNotFoundError(f"Voice file not found: {voice_path}")
pipeline = pipelines[voice[0]]
generator = pipeline(text, voice=voice_path)
for _, ps, _ in generator:
return ps
return ""
def generate_all(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
voice_path = os.path.join(VOICE_DIR, voice)
if not os.path.exists(voice_path):
raise FileNotFoundError(f"Voice file not found: {voice_path}")
pipeline = pipelines[voice[0]]
use_gpu = use_gpu and CUDA_AVAILABLE
first = True
if not use_gpu:
model.to("cpu")
generator = pipeline(text, voice=voice_path, speed=speed)
for _, _, audio in generator:
yield 24000, audio.numpy()
if first:
first = False
yield 24000, torch.zeros(1).numpy()
# Dynamically load .pt voice files from VOICE_DIR
def load_voice_choices():
voice_files = [f for f in os.listdir(VOICE_DIR) if f.endswith('.pt')]
choices = {}
for voice_file in voice_files:
prefix = voice_file[:2]
if prefix == 'af':
label = f"🇺🇸 🚺 {voice_file[3:-3].capitalize()}"
elif prefix == 'am':
label = f"🇺🇸 🚹 {voice_file[3:-3].capitalize()}"
elif prefix == 'bf':
label = f"🇬🇧 🚺 {voice_file[3:-3].capitalize()}"
elif prefix == 'bm':
label = f"🇬🇧 🚹 {voice_file[3:-3].capitalize()}"
else:
label = f"Unknown {voice_file[:-3]}"
choices[label] = voice_file
return choices
CHOICES = load_voice_choices()
# Log available voices
for label, voice_path in CHOICES.items():
full_path = os.path.join(VOICE_DIR, voice_path)
if not os.path.exists(full_path):
logger.warning(f"Voice file not found: {full_path}")
else:
logger.info(f"Loaded voice: {label} ({voice_path})")
# If no voices are found, add a default fallback
if not CHOICES:
logger.warning("No voice files found in VOICE_DIR. Adding a placeholder.")
CHOICES = {"🇺🇸 🚺 Bella 🔥": "af_bella.pt"}
TOKEN_NOTE = '''
💡 Customize pronunciation with Markdown link syntax and /slashes/ like [Kokoro](/kˈOkəɹO/)
💬 To adjust intonation, try punctuation ;:,.!?—…"()“” or stress ˈ and ˌ
⬇️ Lower stress [1 level](-1) or [2 levels](-2)
⬆️ Raise stress 1 level [or](+2) 2 levels (only works on less stressed, usually short words)
'''
with gr.Blocks() as generate_tab:
out_audio = gr.Audio(label="Output Audio", interactive=False, streaming=False, autoplay=True)
generate_btn = gr.Button("Generate", variant="primary")
with gr.Accordion("Output Tokens", open=True):
out_ps = gr.Textbox(interactive=False, show_label=False,
info="Tokens used to generate the audio, up to 510 context length.")
tokenize_btn = gr.Button("Tokenize", variant="secondary")
gr.Markdown(TOKEN_NOTE)
with gr.Blocks() as stream_tab:
out_stream = gr.Audio(label="Output Audio Stream", interactive=False, streaming=True, autoplay=True)
with gr.Row():
stream_btn = gr.Button("Stream", variant="primary")
stop_btn = gr.Button("Stop", variant="stop")
with gr.Accordion("Note", open=True):
gr.Markdown("⚠️ There may be delays in streaming audio due to processing limitations.")
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
text = gr.Textbox(label="Input Text", info="Arbitrarily many characters supported")
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value="af_bella.pt" if "af_bella.pt" in CHOICES.values() else list(CHOICES.values())[0], label="Voice",
info="Quality and availability vary by language")
use_gpu = gr.Dropdown(
[("GPU �-held", True), ("CPU 🐌", False)],
value=CUDA_AVAILABLE,
label="Hardware",
info="GPU is usually faster, but may require CUDA support",
interactive=CUDA_AVAILABLE
)
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
with gr.Column():
gr.TabbedInterface([generate_tab, stream_tab], ["Generate", "Stream"])
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu],
outputs=[out_audio, out_ps])
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps])
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream])
stop_btn.click(fn=None, cancels=[stream_event])
if __name__ == "__main__":
app.queue().launch() |