Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class EvoTransformerV22(nn.Module): | |
def __init__(self, d_model=384, num_heads=6, ffn_dim=1024, num_layers=6, memory_enabled=False): | |
super().__init__() | |
self.embedding = nn.Embedding(30522, d_model) | |
self.memory_enabled = memory_enabled | |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model)) if memory_enabled else None | |
encoder_layer = nn.TransformerEncoderLayer( | |
d_model=d_model, | |
nhead=num_heads, | |
dim_feedforward=ffn_dim, | |
batch_first=True | |
) | |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
self.pool = nn.AdaptiveAvgPool1d(1) | |
self.classifier = nn.Sequential( | |
nn.Linear(d_model, 128), | |
nn.ReLU(), | |
nn.Linear(128, 2) # Binary classification | |
) | |
def forward(self, input_ids): | |
x = self.embedding(input_ids) | |
if self.memory_enabled and self.memory_token is not None: | |
mem = self.memory_token.expand(x.size(0), 1, x.size(2)) | |
x = torch.cat([mem, x], dim=1) | |
x = self.transformer(x) | |
x = self.pool(x.transpose(1, 2)).squeeze(-1) | |
return self.classifier(x) | |