File size: 1,748 Bytes
e7e30db
da42a90
e7e30db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae5830
e7e30db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import torch
import firebase_admin
from firebase_admin import credentials, firestore
from model import SimpleEvoModel

# Initialize Firebase if not already initialized
if not firebase_admin._apps:
    cred = credentials.Certificate("firebase_key.json")
    firebase_admin.initialize_app(cred)

db = firestore.client()

def fetch_training_data():
    logs_ref = db.collection("evo_feedback")
    docs = logs_ref.stream()
    
    inputs, labels = [], []
    for doc in docs:
        data = doc.to_dict()
        goal = data.get("prompt", "")
        winner = data.get("winner", "")
        if winner:
            # Simulated encoding
            vector = [float(ord(c) % 256) / 255.0 for c in (goal + winner)]
            vector = vector[:768] + [0.0] * max(0, 768 - len(vector))  # pad/truncate
            label = 0 if "1" in winner else 1
            inputs.append(vector)
            labels.append(label)
    
    return torch.tensor(inputs, dtype=torch.float32), torch.tensor(labels, dtype=torch.long)

def retrain_and_save():
    X, y = fetch_training_data()
    if len(X) < 2:
        print("⚠️ Not enough training data.")
        return

    model = SimpleEvoModel()
    loss_fn = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

    for epoch in range(5):
        optimizer.zero_grad()
        output = model(X)
        loss = loss_fn(output, y)
        loss.backward()
        optimizer.step()
    
    # Save retrained model to trained_model/
    os.makedirs("trained_model", exist_ok=True)
    torch.save(model.state_dict(), "trained_model/pytorch_model.bin")
    print("✅ EvoTransformer retrained and saved to trained_model/")

if __name__ == "__main__":
    retrain_and_save()