Spaces:
Sleeping
Sleeping
""" | |
evo_inference.py — FLAN-optimized + topic router + anti-echo/off-topic | |
- Routes queries to the right topic (passport / driving / civil status / business) | |
- Prefers chunks whose filename/text match the topic; filters placeholders | |
- FLAN-friendly prompt; cleans prompt-echo; falls back if echo/too short/off-topic | |
- Labels outputs: [Generative] / [Extractive] | |
""" | |
from typing import List, Dict | |
import re | |
from utils_lang import L, normalize_lang | |
# Try to load your real Evo plugin first; else use the example; else None. | |
_GENERATOR = None | |
try: | |
from evo_plugin import load_model as _load_real | |
_GENERATOR = _load_real() | |
except Exception: | |
try: | |
from evo_plugin_example import load_model as _load_example | |
_GENERATOR = _load_example() | |
except Exception: | |
_GENERATOR = None | |
# Keep snippets short so FLAN-T5 stays within encoder limit (512) | |
MAX_SNIPPET_CHARS = 220 | |
def _snippet(text: str) -> str: | |
text = " ".join(text.split()) | |
return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "") | |
def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str: | |
if not hits: | |
return "**[Extractive]**\n\n" + L(lang, "intro_err") | |
bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]] | |
steps = { | |
"en": [ | |
"• Step 1: Check eligibility & gather required documents.", | |
"• Step 2: Confirm fees & payment options.", | |
"• Step 3: Apply online or at the indicated office.", | |
"• Step 4: Keep reference/receipt; track processing time.", | |
], | |
"fr": [ | |
"• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.", | |
"• Étape 2 : Confirmez les frais et les moyens de paiement.", | |
"• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.", | |
"• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.", | |
], | |
"mfe": [ | |
"• Step 1: Get dokiman neseser ek verifie si to elegib.", | |
"• Step 2: Konfirm fre ek manyer peyman.", | |
"• Step 3: Fer demand online ouswa dan biro ki indike.", | |
"• Step 4: Gard referans/reso; swiv letan tretman.", | |
], | |
}[normalize_lang(lang)] | |
return ( | |
"**[Extractive]**\n\n" | |
f"**{L(lang, 'intro_ok')}**\n\n" | |
f"**Q:** {user_query}\n\n" | |
f"**Key information:**\n" + "\n".join(bullets) + "\n\n" | |
f"**Suggested steps:**\n" + "\n".join(steps) | |
) | |
def _lang_name(code: str) -> str: | |
return {"en": "English", "fr": "French", "mfe": "Kreol Morisien"}.get(code, "English") | |
# --- Topic routing ------------------------------------------------------------- | |
_TOPIC_MAP = { | |
"passport": { | |
"file_hints": ["passport_renewal", "passport"], | |
"word_hints": ["passport", "passeport", "paspor", "renew", "renouvel"], | |
"forbid_words": ["business", "cbrd", "brn", "driving", "licence", "license", "civil status"], | |
}, | |
"driving": { | |
"file_hints": ["driving_licence", "driving_license"], | |
"word_hints": ["driving", "licence", "license", "permit", "idp", "pf-77"], | |
"forbid_words": ["passport", "cbrd", "brn", "civil status"], | |
}, | |
"civil": { | |
"file_hints": ["birth_marriage_certificate", "civil_status"], | |
"word_hints": ["birth", "naissance", "nesans", "marriage", "mariage", "maryaz", "certificate", "extract"], | |
"forbid_words": ["passport", "driving", "cbrd", "brn"], | |
}, | |
"business": { | |
"file_hints": ["business_registration_cbrd", "cbrd"], | |
"word_hints": ["business", "brn", "cbrd", "register", "trade fee"], | |
"forbid_words": ["passport", "driving", "civil status"], | |
}, | |
} | |
def _guess_topic(query: str) -> str: | |
q = (query or "").lower() | |
if any(w in q for w in _TOPIC_MAP["passport"]["word_hints"]): | |
return "passport" | |
if any(w in q for w in _TOPIC_MAP["driving"]["word_hints"]): | |
return "driving" | |
if any(w in q for w in _TOPIC_MAP["civil"]["word_hints"]): | |
return "civil" | |
if any(w in q for w in _TOPIC_MAP["business"]["word_hints"]): | |
return "business" | |
return "" # unknown → no routing | |
def _hit_file(h: Dict) -> str: | |
# Try several common fields for filepath | |
return ( | |
h.get("file") | |
or h.get("source") | |
or (h.get("meta") or {}).get("file") | |
or "" | |
).lower() | |
def _filter_hits(hits: List[Dict], query: str, keep: int = 4) -> List[Dict]: | |
""" | |
Prefer non-placeholder + topic-consistent chunks. | |
- 1) Drop placeholders | |
- 2) If topic known: score by filename hits + keyword overlap | |
- 3) Return top 'keep' items | |
""" | |
if not hits: | |
return [] | |
# 1) remove placeholders | |
pool = [ | |
h for h in hits | |
if "placeholder" not in h["text"].lower() and "disclaimer" not in h["text"].lower() | |
] or hits | |
topic = _guess_topic(query) | |
if not topic: | |
return pool[:keep] | |
hints = _TOPIC_MAP[topic] | |
file_hints = hints["file_hints"] | |
word_hints = set(hints["word_hints"]) | |
forbid = set(hints["forbid_words"]) | |
def score(h: Dict) -> float: | |
s = 0.0 | |
f = _hit_file(h) | |
t = h["text"].lower() | |
# filename boosts | |
if any(k in f for k in file_hints): | |
s += 2.0 | |
# keyword overlap boosts | |
s += sum(1.0 for w in word_hints if w in t) | |
# forbid words penalty | |
s -= sum(1.5 for w in forbid if w in t or w in f) | |
return s | |
scored = sorted(pool, key=score, reverse=True) | |
return scored[:keep] | |
# --- Prompt build & cleaning --------------------------------------------------- | |
_ECHO_PATTERNS = [ | |
r"^\s*Instruction.*$", r"^\s*Context:.*$", r"^\s*Question:.*$", r"^\s*Answer.*$", | |
r"^\s*\[Instructions?\].*$", r"^\s*Be concise.*$", r"^\s*Do not invent.*$", | |
r"^\s*(en|fr|mfe)\s*$", | |
] | |
def _clean_generated(text: str) -> str: | |
lines = [ln.strip() for ln in text.strip().splitlines()] | |
out = [] | |
for ln in lines: | |
if any(re.match(pat, ln, flags=re.IGNORECASE) for pat in _ECHO_PATTERNS): | |
continue | |
out.append(ln) | |
cleaned = "\n".join(out).strip() | |
cleaned = re.sub(r"\n{3,}", "\n\n", cleaned) | |
return cleaned | |
def _is_echo_or_too_short_or_offtopic(ans: str, question: str, topic: str) -> bool: | |
a = re.sub(r"\W+", " ", (ans or "").lower()).strip() | |
q = re.sub(r"\W+", " ", (question or "").lower()).strip() | |
if len(a) < 60: | |
return True | |
if q and (a.startswith(q) or q in a[: max(80, len(q) + 10)]): | |
return True | |
# crude off-topic guard | |
if topic == "passport" and ("business" in a or "cbrd" in a or "brn" in a): | |
return True | |
if topic == "driving" and ("passport" in a or "cbrd" in a or "brn" in a or "civil status" in a): | |
return True | |
if topic == "civil" and ("passport" in a or "driving" in a or "cbrd" in a or "brn" in a): | |
return True | |
if topic == "business" and ("passport" in a or "driving" in a or "civil status" in a): | |
return True | |
return False | |
def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str: | |
lang = normalize_lang(lang) | |
lang_readable = _lang_name(lang) | |
topic = _guess_topic(question) | |
# Strong guardrails in the instruction: stay on topic, bullets only | |
if lang == "fr": | |
instruction = ( | |
"Tu es le Copilote Gouvernemental de Maurice. Réponds UNIQUEMENT à partir du contexte. " | |
"Reste sur le SUJET demandé et ignore les autres documents. Ne répète pas la question. " | |
"Écris 6–10 puces courtes couvrant: Documents requis, Frais, Où postuler, Délai, Étapes. " | |
"Si une info manque, dis-le. Pas d'autres sections." | |
) | |
elif lang == "mfe": | |
instruction = ( | |
"To enn Copilot Gouv Moris. Servi ZIS konteks. Reste lor SUZET ki finn demande, " | |
"ignorar lezot dokiman. Pa repete kestyon. Ekri 6–10 pwin kout: Dokiman, Fre, Kot pou al, " | |
"Letan tretman, Steps. Si info manke, dir li. Pa azout lezot seksion." | |
) | |
else: | |
instruction = ( | |
"You are the Mauritius Government Copilot. Use ONLY the context. Stay strictly on the " | |
"REQUESTED TOPIC and ignore other documents. Do NOT repeat the question. Write 6–10 short " | |
"bullets covering: Required documents, Fees, Where to apply, Processing time, Steps. " | |
"If something is missing, say so. No extra sections." | |
) | |
# Add an explicit topic hint to the instruction (helps FLAN stay on track) | |
if topic: | |
instruction += f" Topic: {topic}." | |
ctx_lines = [f"{i+1}) {_snippet(h['text'])}" for i, h in enumerate(hits)] | |
ctx_block = "\n".join(ctx_lines) if ctx_lines else "(none)" | |
# Prime with leading dash to bias bullet style | |
prompt = ( | |
f"Instruction ({lang_readable}): {instruction}\n\n" | |
f"Context:\n{ctx_block}\n\n" | |
f"Question: {question}\n\n" | |
f"Answer ({lang_readable}):\n- " | |
) | |
return prompt | |
# --- Main entry ---------------------------------------------------------------- | |
def synthesize_with_evo( | |
user_query: str, | |
lang: str, | |
hits: List[Dict], | |
mode: str = "extractive", | |
max_new_tokens: int = 192, | |
temperature: float = 0.0, | |
) -> str: | |
lang = normalize_lang(lang) | |
if not hits: | |
return _extractive_answer(user_query, lang, hits) | |
# Route/filter hits to keep only on-topic, high-signal chunks | |
chosen = _filter_hits(hits, user_query, keep=4) | |
if mode != "generative" or _GENERATOR is None: | |
return _extractive_answer(user_query, lang, chosen) | |
prompt = _build_grounded_prompt(user_query, lang, chosen) | |
try: | |
text = _GENERATOR.generate( | |
prompt, | |
max_new_tokens=int(max_new_tokens), | |
temperature=float(temperature), | |
) | |
text = _clean_generated(text) | |
topic = _guess_topic(user_query) | |
if _is_echo_or_too_short_or_offtopic(text, user_query, topic): | |
return _extractive_answer(user_query, lang, chosen) | |
return "**[Generative]**\n\n" + text | |
except Exception: | |
return _extractive_answer(user_query, lang, chosen) | |