Spaces:
Sleeping
Sleeping
# app.py β Enhanced UI + stable backend (idle sphere, Clear, inline Plotly, accuracy) | |
import math, random, time, threading | |
from dataclasses import dataclass, asdict | |
from typing import List, Tuple, Dict, Any, Optional | |
from functools import lru_cache | |
import numpy as np | |
import plotly.graph_objs as go | |
import plotly.io as pio | |
import gradio as gr | |
import pandas as pd | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from data_utils import load_piqa, load_hellaswag, hash_vectorize | |
# ========================= | |
# ENHANCED CSS | |
# ========================= | |
ENHANCED_CSS = """ | |
:root { | |
--radius: 14px; | |
--fg: #E5E7EB; | |
--muted: #94A3B8; | |
--line: #1f2b36; | |
--bg: #0F1A24; | |
--panel-bg: #0c161f; | |
--accent: #3B82F6; | |
--accent-hover: #2563EB; | |
--danger: #EF4444; | |
} | |
.gradio-container { | |
max-width: 1400px !important; | |
background: var(--bg); | |
padding: 16px !important; | |
} | |
#header { | |
padding: 16px 0; | |
margin-bottom: 16px; | |
border-bottom: 1px solid var(--line); | |
} | |
h1, h2, h3, .gr-markdown { | |
color: var(--fg); | |
} | |
.gr-button { | |
border-radius: 8px; | |
padding: 8px 16px; | |
transition: all 0.2s ease; | |
font-weight: 500 !important; | |
} | |
.btn-primary { | |
background: var(--accent) !important; | |
border: 1px solid var(--accent) !important; | |
} | |
.btn-primary:hover { background: var(--accent-hover) !important; } | |
.btn-secondary { | |
background: transparent !important; | |
border: 1px solid var(--line) !important; | |
} | |
.btn-danger { | |
background: var(--danger) !important; | |
border: 1px solid var(--danger) !important; | |
} | |
.control-group { | |
border: 1px solid var(--line); | |
border-radius: var(--radius); | |
background: var(--panel-bg); | |
padding: 20px; | |
margin-bottom: 20px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05); | |
} | |
.panel { | |
border: 1px solid var(--line); | |
border-radius: var(--radius); | |
background: var(--panel-bg); | |
padding: 20px; | |
margin-bottom: 20px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05); | |
} | |
.stats-panel { | |
background: linear-gradient(145deg, #0a121b, #0c161f); | |
border-left: 3px solid var(--accent); | |
} | |
#stats { | |
color: var(--fg); | |
line-height: 1.6; | |
} | |
#stats strong { | |
font-weight: 500; | |
color: var(--accent); | |
} | |
.param-slider { margin-bottom: 12px; } | |
.visualization-container { | |
display: flex; | |
flex-direction: column; | |
gap: 20px; | |
height: 100%; | |
} | |
.viz-panel { flex: 1; min-height: 300px; } | |
.viz-header { | |
display: flex; | |
justify-content: space-between; | |
align-items: center; | |
margin-bottom: 12px; | |
padding-bottom: 8px; | |
border-bottom: 1px solid var(--line); | |
} | |
.viz-title { | |
font-size: 1.1rem; | |
font-weight: 500; | |
color: var(--accent); | |
} | |
.gen-counter { | |
font-size: 0.9rem; | |
background: rgba(59, 130, 246, 0.15); | |
padding: 4px 10px; | |
border-radius: 12px; | |
} | |
.slider-info { | |
display: flex; | |
justify-content: space-between; | |
font-size: 0.85rem; | |
color: var(--muted); | |
margin-top: 4px; | |
} | |
.controls-grid { | |
display: grid; | |
grid-template-columns: 1fr 1fr; | |
gap: 16px; | |
} | |
@media (max-width: 1200px) { .controls-grid { grid-template-columns: 1fr; } } | |
.data-table { max-height: 400px; overflow-y: auto; } | |
.data-table table { | |
width: 100%; | |
border-collapse: collapse; | |
} | |
.data-table th { | |
background: rgba(15, 26, 36, 0.8); | |
position: sticky; | |
top: 0; | |
text-align: left; | |
padding: 10px 12px; | |
font-weight: 500; | |
color: var(--accent); | |
border-bottom: 1px solid var(--line); | |
} | |
.data-table td { | |
padding: 8px 12px; | |
border-bottom: 1px solid rgba(31, 43, 54, 0.5); | |
} | |
.data-table tr:hover { background: rgba(31, 43, 54, 0.3); } | |
.action-buttons { display: flex; gap: 12px; margin-top: 20px; } | |
.footer { | |
margin-top: 20px; | |
padding-top: 20px; | |
border-top: 1px solid var(--line); | |
font-size: 0.85rem; | |
color: var(--muted); | |
text-align: center; | |
} | |
""" | |
# ========================= | |
# GENOME + EVOLUTION CORE | |
# ========================= | |
class Genome: | |
d_model: int | |
n_layers: int | |
n_heads: int | |
ffn_mult: float | |
memory_tokens: int | |
dropout: float | |
species: int = 0 | |
fitness: float = float("inf") | |
acc: Optional[float] = None | |
def vector(self) -> np.ndarray: | |
return np.array([ | |
self.d_model / 1024.0, | |
self.n_layers / 24.0, | |
self.n_heads / 32.0, | |
self.ffn_mult / 8.0, | |
self.memory_tokens / 64.0, | |
self.dropout / 0.5 | |
], dtype=np.float32) | |
def random_genome(rng: random.Random) -> Genome: | |
return Genome( | |
d_model=rng.choice([256, 384, 512, 640]), | |
n_layers=rng.choice([4, 6, 8, 10, 12]), | |
n_heads=rng.choice([4, 6, 8, 10, 12]), | |
ffn_mult=rng.choice([2.0, 3.0, 4.0, 6.0]), | |
memory_tokens=rng.choice([0, 4, 8, 16]), | |
dropout=rng.choice([0.0, 0.05, 0.1, 0.15]), | |
species=rng.randrange(5) | |
) | |
def mutate(g: Genome, rng: random.Random, rate: float) -> Genome: | |
g = Genome(**asdict(g)) | |
if rng.random() < rate: g.d_model = rng.choice([256, 384, 512, 640]) | |
if rng.random() < rate: g.n_layers = rng.choice([4, 6, 8, 10, 12]) | |
if rng.random() < rate: g.n_heads = rng.choice([4, 6, 8, 10, 12]) | |
if rng.random() < rate: g.ffn_mult = rng.choice([2.0, 3.0, 4.0, 6.0]) | |
if rng.random() < rate: g.memory_tokens = rng.choice([0, 4, 8, 16]) | |
if rng.random() < rate: g.dropout = rng.choice([0.0, 0.05, 0.1, 0.15]) | |
if rng.random() < rate * 0.5: g.species = rng.randrange(5) | |
g.fitness = float("inf"); g.acc = None | |
return g | |
def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome: | |
return Genome( | |
d_model = a.d_model if rng.random()<0.5 else b.d_model, | |
n_layers = a.n_layers if rng.random()<0.5 else b.n_layers, | |
n_heads = a.n_heads if rng.random()<0.5 else b.n_heads, | |
ffn_mult = a.ffn_mult if rng.random()<0.5 else b.ffn_mult, | |
memory_tokens = a.memory_tokens if rng.random()<0.5 else b.memory_tokens, | |
dropout = a.dropout if rng.random()<0.5 else b.dropout, | |
species = a.species if rng.random()<0.5 else b.species, | |
fitness = float("inf"), acc=None | |
) | |
# ========================= | |
# PROXY FITNESS | |
# ========================= | |
def rastrigin(x: np.ndarray) -> float: | |
A, n = 10.0, x.shape[0] | |
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x)) | |
class TinyMLP(nn.Module): | |
def __init__(self, in_dim: int, genome: Genome): | |
super().__init__() | |
h1 = max(64, int(0.25 * genome.d_model)) | |
h2 = max(32, int(genome.ffn_mult * 32)) | |
self.net = nn.Sequential( | |
nn.Linear(in_dim, h1), nn.ReLU(), | |
nn.Linear(h1, h2), nn.ReLU(), | |
nn.Linear(h2, 1) | |
) | |
def forward(self, x): return self.net(x).squeeze(-1) | |
def _cached_dataset(name: str): | |
try: | |
if name.startswith("PIQA"): return load_piqa(subset=800, seed=42) | |
if name.startswith("HellaSwag"): return load_hellaswag(subset=800, seed=42) | |
except Exception: | |
return None | |
return None | |
def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device: str="cpu"): | |
data = _cached_dataset(dataset_name) | |
if data is None: | |
# Fallback to surrogate so UI still runs | |
v = genome.vector() * 2 - 1 | |
base = rastrigin(v) | |
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens) | |
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore))) | |
return float(base + parsimony + noise), None | |
Xtr_txt, ytr, Xva_txt, yva = data | |
nfeat = 4096 | |
Xtr = hash_vectorize(Xtr_txt, n_features=nfeat, seed=1234) | |
Xva = hash_vectorize(Xva_txt, n_features=nfeat, seed=5678) | |
Xtr_t = torch.from_numpy(Xtr); ytr_t = torch.from_numpy(ytr.astype(np.float32)) | |
Xva_t = torch.from_numpy(Xva); yva_t = torch.from_numpy(yva.astype(np.float32)) | |
model = TinyMLP(nfeat, genome).to(device) | |
opt = optim.AdamW(model.parameters(), lr=2e-3) | |
lossf = nn.BCEWithLogitsLoss() | |
model.train(); steps, bs, N = 120, 256, Xtr_t.size(0) | |
for _ in range(steps): | |
idx = torch.randint(0, N, (bs,)) | |
xb = Xtr_t[idx].to(device); yb = ytr_t[idx].to(device) | |
logits = model(xb); loss = lossf(logits, yb) | |
opt.zero_grad(); loss.backward() | |
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) | |
opt.step() | |
model.eval() | |
with torch.no_grad(): | |
logits = model(Xva_t.to(device)) | |
probs = torch.sigmoid(logits).cpu().numpy() | |
if dataset_name.startswith("PIQA"): | |
probs = probs.reshape(-1,2); yva2 = yva.reshape(-1,2) | |
pred = (probs[:,0] > probs[:,1]).astype(np.int64) | |
truth = (yva2[:,0] == 1).astype(np.int64) | |
acc = float((pred == truth).mean()) | |
else: | |
probs = probs.reshape(-1,4); yva2 = yva.reshape(-1,4) | |
pred = probs.argmax(axis=1); truth = yva2.argmax(axis=1) | |
acc = float((pred == truth).mean()) | |
parsimony = 0.00000002 * (genome.d_model**2 * genome.n_layers) + 0.0001 * genome.memory_tokens | |
noise = np.random.normal(scale=0.01 * max(0.0, min(1.0, explore))) | |
fitness = (1.0 - acc) + parsimony + noise | |
return float(max(0.0, min(1.5, fitness))), float(acc) | |
def evaluate_genome(genome: Genome, dataset: str, explore: float): | |
if dataset == "Demo (Surrogate)": | |
v = genome.vector() * 2 - 1 | |
base = rastrigin(v) | |
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens) | |
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore))) | |
return float(base + parsimony + noise), None | |
if dataset.startswith("PIQA"): return _train_eval_proxy(genome, "PIQA", explore) | |
if dataset.startswith("HellaSwag"): return _train_eval_proxy(genome, "HellaSwag", explore) | |
v = genome.vector() * 2 - 1 | |
return float(rastrigin(v)), None | |
# ========================= | |
# VIZ β idle sphere, big transparent surface | |
# ========================= | |
BG = "#0F1A24" | |
DOT = "#93C5FD" | |
SPHERE = "#cbd5e1" | |
def sphere_project(points: np.ndarray) -> np.ndarray: | |
rng = np.random.RandomState(42) | |
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32) | |
Y = points @ W | |
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8 | |
return (Y / norms) * 1.22 | |
def make_idle_sphere() -> go.Figure: | |
u = np.linspace(0, 2*np.pi, 72) | |
v = np.linspace(0, np.pi, 36) | |
r = 1.22 | |
xs = r*np.outer(np.cos(u), np.sin(v)) | |
ys = r*np.outer(np.sin(u), np.sin(v)) | |
zs = r*np.outer(np.ones_like(u), np.cos(v)) | |
sphere = go.Surface( | |
x=xs, y=ys, z=zs, | |
opacity=0.06, showscale=False, | |
colorscale=[[0, SPHERE],[1, SPHERE]], | |
hoverinfo="skip" | |
) | |
layout = go.Layout( | |
paper_bgcolor=BG, plot_bgcolor=BG, | |
title=dict(text="Architecture Space (idle)", font=dict(color="#E5E7EB")), | |
scene=dict( | |
xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False), | |
bgcolor=BG | |
), | |
margin=dict(l=0, r=0, t=36, b=0), showlegend=False, height=720, | |
font=dict(family="Inter, Arial, sans-serif", size=14, color="#E5E7EB") | |
) | |
return go.Figure(data=[sphere], layout=layout) | |
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure: | |
custom = np.array([[g.d_model, g.n_layers, g.n_heads, g.ffn_mult, g.memory_tokens, g.dropout, | |
g.species, g.fitness, (g.acc if g.acc is not None else -1.0)] | |
for g in genomes], dtype=np.float32) | |
scatter = go.Scatter3d( | |
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2], | |
mode='markers', | |
marker=dict(size=7.0, color=DOT, opacity=0.92), | |
customdata=custom, | |
hovertemplate=( | |
"<b>Genome</b><br>" | |
"d_model=%{customdata[0]:.0f} Β· layers=%{customdata[1]:.0f} Β· heads=%{customdata[2]:.0f}<br>" | |
"ffn_mult=%{customdata[3]:.1f} Β· mem=%{customdata[4]:.0f} Β· drop=%{customdata[5]:.2f}<br>" | |
"fitness=%{customdata[7]:.4f} Β· acc=%{customdata[8]:.3f}<extra></extra>" | |
) | |
) | |
idle = make_idle_sphere() | |
fig = go.Figure(data=idle.data + (scatter,), layout=idle.layout) | |
fig.update_layout(title=dict(text=f"Evo Architecture Space β Gen {gen_idx}")) | |
return fig | |
def make_history_figure(history: List[Tuple[int,float,float]], metric: str) -> go.Figure: | |
xs = [h[0] for h in history] | |
if metric == "Accuracy": | |
ys = [h[2] if (h[2] == h[2]) else None for h in history] | |
title, ylab = "Best Accuracy per Generation", "Accuracy" | |
else: | |
ys = [h[1] for h in history] | |
title, ylab = "Best Fitness per Generation", "Fitness (β better)" | |
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers", line=dict(width=2), marker=dict(color=DOT))]) | |
fig.update_layout( | |
paper_bgcolor=BG, plot_bgcolor=BG, font=dict(color="#E5E7EB"), | |
title=dict(text=title), xaxis_title="Generation", yaxis_title=ylab, | |
margin=dict(l=30, r=10, t=36, b=30), height=340 | |
) | |
fig.update_xaxes(gridcolor="#1f2b36"); fig.update_yaxes(gridcolor="#1f2b36") | |
return fig | |
def fig_to_html(fig: go.Figure) -> str: | |
# Inline Plotly JS so it renders even without CDN | |
return pio.to_html(fig, include_plotlyjs=True, full_html=False, config=dict(displaylogo=False)) | |
def approx_params(g: Genome) -> int: | |
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2) | |
total = per_layer * g.n_layers + 1000 * g.memory_tokens | |
return int(total) | |
# ========================= | |
# RUNNER | |
# ========================= | |
class EvoRunner: | |
def __init__(self): | |
self.lock = threading.Lock() | |
self.running = False | |
self.stop_flag = False | |
self.state: Dict[str, Any] = {} | |
# Seed idle visuals | |
idle = fig_to_html(make_idle_sphere()) | |
self.state = { | |
"sphere_html": idle, | |
"history_html": fig_to_html(make_history_figure([], "Accuracy")), | |
"top": [], "best": {}, "gen": 0, | |
"dataset": "Demo (Surrogate)", "metric": "Accuracy" | |
} | |
def run(self, dataset, pop_size, generations, mutation_rate, explore, exploit, seed, pace_ms, metric_choice): | |
rng = random.Random(int(seed)) | |
self.stop_flag = False | |
self.running = True | |
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)] | |
for g in pop: | |
fit, acc = evaluate_genome(g, dataset, explore) | |
g.fitness, g.acc = fit, acc | |
history: List[Tuple[int,float,float]] = [] | |
for gen in range(1, generations+1): | |
if self.stop_flag: break | |
k = max(2, int(2 + exploit * 5)) | |
parents = [min(rng.sample(pop, k=k), key=lambda x: x.fitness) for _ in range(pop_size)] | |
children = [] | |
for i in range(0, pop_size, 2): | |
a = parents[i]; b = parents[(i+1) % pop_size] | |
child1 = mutate(crossover(a,b,rng), rng, mutation_rate) | |
child2 = mutate(crossover(b,a,rng), rng, mutation_rate) | |
children.extend([child1, child2]) | |
children = children[:pop_size] | |
for c in children: | |
fit, acc = evaluate_genome(c, dataset, explore) | |
c.fitness, c.acc = fit, acc | |
elite_n = max(1, pop_size // 10) | |
elites = sorted(pop, key=lambda x: x.fitness)[:elite_n] | |
pop = sorted(children, key=lambda x: x.fitness) | |
pop[-elite_n:] = elites | |
best = min(pop, key=lambda x: x.fitness) | |
history.append((gen, best.fitness, (best.acc if best.acc is not None else float("nan")))) | |
P = np.stack([g.vector() for g in pop], axis=0) | |
P3 = sphere_project(P) | |
sphere_fig = make_sphere_figure(P3, pop, gen) | |
hist_fig = make_history_figure(history, metric_choice) | |
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))] | |
top_table = [{ | |
"gen": gen, "fitness": round(t.fitness, 4), | |
"accuracy": (None if t.acc is None else round(float(t.acc), 4)), | |
"d_model": t.d_model, "layers": t.n_layers, "heads": t.n_heads, | |
"ffn_mult": t.ffn_mult, "mem": t.memory_tokens, "dropout": t.dropout, | |
"params_approx": approx_params(t) | |
} for t in top] | |
best_card = top_table[0] if top_table else {} | |
with self.lock: | |
self.state = { | |
"sphere_html": fig_to_html(sphere_fig), | |
"history_html": fig_to_html(hist_fig), | |
"top": top_table, | |
"best": best_card, | |
"gen": gen, | |
"dataset": dataset, | |
"metric": metric_choice | |
} | |
time.sleep(max(0.0, pace_ms/1000.0)) | |
self.running = False | |
def start(self, *args, **kwargs): | |
if self.running: return | |
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True) | |
t.start() | |
def stop(self): self.stop_flag = True | |
def clear(self): | |
# stop and reset to idle sphere | |
self.stop_flag = True | |
idle = fig_to_html(make_idle_sphere()) | |
with self.lock: | |
self.running = False | |
self.state = { | |
"sphere_html": idle, | |
"history_html": fig_to_html(make_history_figure([], "Accuracy")), | |
"top": [], "best": {}, "gen": 0, | |
"dataset": "Demo (Surrogate)", "metric": "Accuracy" | |
} | |
runner = EvoRunner() | |
# ========================= | |
# UI CALLBACKS | |
# ========================= | |
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms, metric_choice): | |
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms), metric_choice) | |
return (gr.update(interactive=False), gr.update(interactive=True), gr.update(interactive=False)) | |
def stop_evo(): | |
runner.stop() | |
return (gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=True)) | |
def clear_evo(): | |
runner.clear() | |
sphere_html, history_html, stats_md, df, gen_counter_md = poll_state() | |
return sphere_html, history_html, stats_md, df, gen_counter_md, gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=True) | |
def poll_state(): | |
with runner.lock: | |
s = runner.state.copy() | |
sphere_html = s.get("sphere_html", "") | |
history_html = s.get("history_html", "") | |
best = s.get("best", {}) | |
gen = s.get("gen", 0) | |
dataset = s.get("dataset", "Demo (Surrogate)") | |
top = s.get("top", []) | |
if best: | |
acc_txt = "β" if best.get("accuracy") is None else f"{best.get('accuracy'):.3f}" | |
stats_md = ( | |
f"**Dataset:** {dataset} \n" | |
f"**Generation:** {gen} \n" | |
f"**Best fitness:** {best.get('fitness','β')} \n" | |
f"**Best accuracy:** {acc_txt} \n" | |
f"**Config:** d_model={best.get('d_model')} Β· layers={best.get('layers')} Β· " | |
f"heads={best.get('heads')} Β· ffn_mult={best.get('ffn_mult')} Β· mem={best.get('mem')} Β· " | |
f"dropout={best.get('dropout')} \n" | |
f"**~Params (rough):** {best.get('params_approx'):,}" | |
) | |
else: | |
stats_md = "Ready. Press **Start** to begin evolution." | |
df = pd.DataFrame(top) | |
gen_counter_md = f"Gen **{gen}**" | |
return sphere_html, history_html, stats_md, df, gen_counter_md | |
def export_snapshot(): | |
from json import dumps | |
with runner.lock: | |
payload = dumps(runner.state, default=lambda o: o, indent=2) | |
path = "evo_snapshot.json" | |
with open(path, "w", encoding="utf-8") as f: | |
f.write(payload) | |
return path | |
# ========================= | |
# BUILD ENHANCED UI | |
# ========================= | |
with gr.Blocks(css=ENHANCED_CSS, theme=gr.themes.Default()) as demo: | |
# Header | |
with gr.Column(elem_id="header"): | |
gr.Markdown("## 𧬠Neuroevolution Playground") | |
gr.Markdown("Evolve neural architectures using genetic algorithms") | |
with gr.Row(): | |
# Left Panel - Controls | |
with gr.Column(scale=1): | |
# Parameters Group | |
with gr.Group(elem_classes=["control-group"]): | |
gr.Markdown("### π Evolution Parameters") | |
with gr.Column(): | |
dataset = gr.Dropdown( | |
label="Evaluation Dataset", | |
choices=["Demo (Surrogate)", "PIQA (Phase 2)", "HellaSwag (Phase 2)"], | |
value="Demo (Surrogate)", | |
info="Dataset used for fitness evaluation" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
pop = gr.Slider(8, 80, value=24, step=2, label="Population Size", elem_classes=["param-slider"]) | |
gens = gr.Slider(5, 200, value=60, step=1, label="Max Generations", elem_classes=["param-slider"]) | |
mut = gr.Slider(0.05, 0.9, value=0.25, step=0.01, label="Mutation Rate", elem_classes=["param-slider"]) | |
with gr.Column(): | |
explore = gr.Slider(0.0, 1.0, value=0.35, step=0.05, label="Exploration", elem_classes=["param-slider"]) | |
exploit = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Exploitation", elem_classes=["param-slider"]) | |
seed = gr.Number(value=42, label="Random Seed", precision=0) | |
pace = gr.Slider(0, 1000, value=120, step=10, label="Simulation Speed (ms)", elem_classes=["param-slider"]) | |
metric_choice = gr.Radio(choices=["Accuracy", "Fitness"], value="Accuracy", label="History Metric Display") | |
# Status Panel | |
with gr.Group(elem_classes=["panel", "stats-panel"]): | |
gr.Markdown("### π Current Status") | |
stats_md = gr.Markdown("Ready. Press **Start** to begin evolution.", elem_id="stats") | |
# Action Buttons | |
with gr.Row(elem_classes=["action-buttons"]): | |
start = gr.Button("βΆ Start Evolution", variant="primary", elem_classes=["btn-primary"]) | |
stop = gr.Button("βΉ Stop", variant="secondary", elem_classes=["btn-danger"], interactive=False) | |
clear = gr.Button("β» Reset", elem_classes=["btn-secondary"]) | |
# Export | |
with gr.Group(elem_classes=["panel"]): | |
gr.Markdown("### πΎ Export Results") | |
with gr.Row(): | |
export_btn = gr.Button("Save Snapshot (JSON)") | |
export_file = gr.File(label="Download snapshot", visible=False) | |
# Right Panel - Visualizations | |
with gr.Column(scale=2): | |
# 3D Visualization | |
with gr.Group(elem_classes=["panel", "viz-panel"]): | |
with gr.Column(elem_classes=["viz-header"]): | |
with gr.Row(): | |
gr.Markdown("### π Architecture Space", elem_classes=["viz-title"]) | |
gen_counter = gr.Markdown("", elem_classes=["gen-counter"]) | |
sphere_html = gr.HTML() | |
# History Visualization | |
with gr.Group(elem_classes=["panel", "viz-panel"]): | |
with gr.Column(elem_classes=["viz-header"]): | |
gr.Markdown("### π Performance History", elem_classes=["viz-title"]) | |
hist_html = gr.HTML() | |
# Results Table | |
with gr.Group(elem_classes=["panel"]): | |
gr.Markdown("### π Top Genomes") | |
with gr.Column(elem_classes=["data-table"]): | |
top_df = gr.Dataframe(label="", wrap=True, interactive=False) | |
# Footer | |
with gr.Column(elem_classes=["footer"]): | |
gr.Markdown("Neuroevolution Playground v1.0 β’ Plotly + Gradio") | |
# Wiring | |
start.click( | |
start_evo, | |
[dataset, pop, gens, mut, explore, exploit, seed, pace, metric_choice], | |
[start, stop, clear] | |
) | |
stop.click(stop_evo, [], [start, stop, clear]) | |
clear.click( | |
clear_evo, | |
[], | |
[sphere_html, hist_html, stats_md, top_df, gen_counter, start, stop, clear] | |
) | |
export_btn.click(export_snapshot, [], [export_file]) | |
# State polling | |
demo.load(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter]) | |
gr.Timer(0.7).tick(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter]) | |
if __name__ == "__main__": | |
demo.launch() | |