|
import cv2 as cv |
|
import numpy as np |
|
import gradio as gr |
|
from mobilenet import MobileNet |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
model_path = hf_hub_download(repo_id="opencv/image_classification_mobilenet", filename="image_classification_mobilenetv1_2022apr.onnx") |
|
top_k = 10 |
|
backend_id = cv.dnn.DNN_BACKEND_OPENCV |
|
target_id = cv.dnn.DNN_TARGET_CPU |
|
|
|
|
|
model = MobileNet(modelPath=model_path, topK=top_k, backendId=backend_id, targetId=target_id) |
|
|
|
def add_hsv_noise(image, hue_noise=0, saturation_noise=0, value_noise=0): |
|
"""Add HSV noise to an image""" |
|
if image is None: |
|
return None |
|
|
|
|
|
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV).astype(np.float32) |
|
|
|
|
|
hsv[:, :, 0] = np.clip(hsv[:, :, 0] + hue_noise, 0, 179) |
|
hsv[:, :, 1] = np.clip(hsv[:, :, 1] + saturation_noise, 0, 255) |
|
hsv[:, :, 2] = np.clip(hsv[:, :, 2] + value_noise, 0, 255) |
|
|
|
|
|
bgr = cv.cvtColor(hsv.astype(np.uint8), cv.COLOR_HSV2BGR) |
|
|
|
return bgr |
|
|
|
def classify_image_with_noise(input_image, top_n, hue_noise, saturation_noise, value_noise): |
|
"""Classify image with HSV noise applied and return exact confidence scores""" |
|
if input_image is None: |
|
return None, "Please upload an image first." |
|
|
|
|
|
noisy_image = add_hsv_noise(input_image, hue_noise, saturation_noise, value_noise) |
|
|
|
|
|
image = cv.resize(noisy_image, (256, 256)) |
|
image = image[16:240, 16:240, :] |
|
|
|
|
|
input_blob = model._preprocess(image) |
|
|
|
|
|
model.model.setInput(input_blob, model.input_names) |
|
output_blob = model.model.forward(model.output_names) |
|
|
|
|
|
raw_scores = output_blob[0] |
|
probabilities = np.exp(raw_scores) / np.sum(np.exp(raw_scores)) |
|
|
|
|
|
top_indices = np.argsort(probabilities)[::-1][:top_n] |
|
|
|
|
|
result_lines = [] |
|
for i, idx in enumerate(top_indices): |
|
label = model._labels[idx] |
|
confidence = probabilities[idx] |
|
result_lines.append(f"{i+1}. {label}: {confidence:.6f} ({confidence*100:.4f}%)") |
|
|
|
result_str = "\n".join(result_lines) |
|
|
|
|
|
display_image = cv.cvtColor(noisy_image, cv.COLOR_BGR2RGB) |
|
|
|
return display_image, result_str |
|
|
|
def clear_output_on_change(img): |
|
return gr.update(value=""), None |
|
|
|
def clear_all(): |
|
return None, None, "" |
|
|
|
with gr.Blocks(css='''.example * { |
|
font-style: italic; |
|
font-size: 18px !important; |
|
color: #0ea5e9 !important; |
|
}''') as demo: |
|
|
|
gr.Markdown("### Image Classification with MobileNet + HSV Noise Analysis") |
|
gr.Markdown("Upload an image and adjust HSV noise sliders to see how it affects MobileNet predictions in real-time.") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(type="numpy", label="Upload Image") |
|
|
|
gr.Markdown("### Classification Settings") |
|
top_n = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Top N Classes") |
|
|
|
gr.Markdown("### HSV Noise Controls") |
|
hue_noise = gr.Slider(minimum=-50, maximum=50, value=0, step=1, label="Hue Noise (-50 to 50)") |
|
saturation_noise = gr.Slider(minimum=-100, maximum=100, value=0, step=5, label="Saturation Noise (-100 to 100)") |
|
value_noise = gr.Slider(minimum=-100, maximum=100, value=0, step=5, label="Value/Brightness Noise (-100 to 100)") |
|
|
|
with gr.Column(): |
|
noisy_image_output = gr.Image(label="Image with Noise Applied") |
|
output_box = gr.Textbox(label="Top Predictions with Confidence Scores", lines=10, max_lines=15) |
|
|
|
image_input.change(fn=clear_output_on_change, inputs=image_input, outputs=[output_box, noisy_image_output]) |
|
|
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
clear_btn = gr.Button("Clear") |
|
|
|
inputs = [image_input, top_n, hue_noise, saturation_noise, value_noise] |
|
outputs = [noisy_image_output, output_box] |
|
|
|
for slider in [top_n, hue_noise, saturation_noise, value_noise]: |
|
slider.change(fn=classify_image_with_noise, inputs=inputs, outputs=outputs) |
|
|
|
submit_btn.click(fn=classify_image_with_noise, inputs=inputs, outputs=outputs) |
|
clear_btn.click(fn=clear_all, outputs=[image_input, noisy_image_output, output_box]) |
|
|
|
gr.Markdown("Click on any example to try it.", elem_classes=["example"]) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["examples/squirrel_cls.jpg"], |
|
["examples/baboon.jpg"] |
|
], |
|
inputs=image_input |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |