Zero2x / App.py
Hyphonical's picture
πŸ“¦ Add Experimental Region Support, Add SAD Script
c914404
raw
history blame
11.3 kB
from spandrel import ModelLoader
import torch
from pathlib import Path
import gradio as App
import logging
import spaces
import time
import cv2
import os
from gradio import themes
from rich.console import Console
from rich.logging import RichHandler
from Scripts.SAD import GetDifferenceRectangles
# ============================== #
# Core Settings #
# ============================== #
Theme = themes.Citrus(
primary_hue='blue',
secondary_hue='blue',
radius_size=themes.sizes.radius_xxl
).set(
link_text_color='blue'
)
ModelDir = Path('./Models')
TempDir = Path('./Temp')
os.environ['GRADIO_TEMP_DIR'] = str(TempDir)
ModelFileType = '.pth'
# ============================== #
# Logging #
# ============================== #
logging.basicConfig(
level=logging.INFO,
format='%(message)s',
datefmt='[%X]',
handlers=[RichHandler(
console=Console(),
rich_tracebacks=True,
omit_repeated_times=False,
markup=True,
show_path=False,
)],
)
Logger = logging.getLogger('Video2x')
logging.getLogger('httpx').setLevel(logging.WARNING)
# ============================== #
# Device Configuration #
# ============================== #
@spaces.GPU
def GetDeviceName():
Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Logger.info(f'πŸ§ͺ Using device: {str(Device).upper()}')
return Device
Device = GetDeviceName()
# ============================== #
# Utility Functions #
# ============================== #
def HumanizeSeconds(Seconds):
Hours = int(Seconds // 3600)
Minutes = int((Seconds % 3600) // 60)
Seconds = int(Seconds % 60)
if Hours > 0:
return f'{Hours}h {Minutes}m {Seconds}s'
elif Minutes > 0:
return f'{Minutes}m {Seconds}s'
else:
return f'{Seconds}s'
def HumanizedBytes(Size):
Units = ['B', 'KB', 'MB', 'GB', 'TB']
Index = 0
while Size >= 1024 and Index < len(Units) - 1:
Size /= 1024.0
Index += 1
return f'{Size:.2f} {Units[Index]}'
# ============================== #
# Main Processing Logic #
# ============================== #
@spaces.GPU
class Upscaler:
def __init__(self):
pass
def ListModels(self):
Models = sorted(
[File.name for File in ModelDir.glob('*' + ModelFileType) if File.is_file()]
)
Logger.info(f'πŸ“š Found {len(Models)} Models In Directory')
return Models
def LoadModel(self, ModelName):
torch.cuda.empty_cache()
Model = (
ModelLoader()
.load_from_file(ModelDir / (ModelName + ModelFileType))
.to(Device)
.eval()
)
Logger.info(f'πŸ€– Loaded Model {ModelName} Onto {str(Device).upper()}')
return Model
def UnloadModel(self):
if Device.type == 'cuda':
torch.cuda.empty_cache()
Logger.info('πŸ€– Model Unloaded Successfully')
def CleanUp(self):
self.UnloadModel()
Logger.info('🧹 Temporary Files Cleaned Up')
def Process(self, InputVideo, InputModel, InputUseRegions, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, Progress=App.Progress()):
if not InputVideo:
Logger.warning('❌ No Video Provided')
App.Warning('❌ No Video Provided')
return None, None
Progress(0, desc='βš™οΈ Loading Model')
Model = self.LoadModel(InputModel)
Logger.info(f'πŸ“Ό Processing Video: {Path(InputVideo).name}')
Progress(0, desc='πŸ“Ό Processing Video')
Video = cv2.VideoCapture(InputVideo)
FrameRate = Video.get(cv2.CAP_PROP_FPS)
FrameCount = int(Video.get(cv2.CAP_PROP_FRAME_COUNT))
Width = int(Video.get(cv2.CAP_PROP_FRAME_WIDTH))
Height = int(Video.get(cv2.CAP_PROP_FRAME_HEIGHT))
Logger.info(f'πŸ“ Video Properties: {FrameCount} Frames, {FrameRate} FPS, {Width}x{Height}')
PerFrameProgress = 1 / FrameCount
FrameProgress = 0.0
StartTime = time.time()
Times = []
while True:
Ret, Frame = Video.read()
if not Ret:
break
FrameRgb = cv2.cvtColor(Frame, cv2.COLOR_BGR2RGB)
FrameForTorch = FrameRgb.transpose(2, 0, 1)
FrameForTorch = torch.from_numpy(FrameForTorch).unsqueeze(0).to(Device).float() / 255.0
RetNext, NextFrame = Video.read()
if not RetNext:
NextFrame = Frame
DiffResult = GetDifferenceRectangles(
Frame,
NextFrame,
Threshold=InputThreshold,
Rows=12,
Columns=20,
Padding=InputPadding
)
SimilarityPercentage = DiffResult['SimilarPercentage']
Rectangles = DiffResult['Rectangles']
if SimilarityPercentage > InputMinPercentage and len(Rectangles) < InputMaxRectangles and InputUseRegions:
Logger.info(f'🟩 Frame {int(Video.get(cv2.CAP_PROP_POS_FRAMES))}: {SimilarityPercentage:.2f}% Similar, {len(Rectangles)} Regions To Upscale')
Cols = DiffResult['Columns']
Rows = DiffResult['Rows']
FrameHeight, FrameWidth = Frame.shape[:2]
SegmentWidth = FrameWidth // Cols
SegmentHeight = FrameHeight // Rows
for X, Y, W, H in Rectangles:
X1 = X * SegmentWidth
Y1 = Y * SegmentHeight
X2 = FrameWidth if X + W == Cols else X1 + W * SegmentWidth
Y2 = FrameHeight if Y + H == Rows else Y1 + H * SegmentHeight
Region = Frame[Y1:Y2, X1:X2]
RegionRgb = cv2.cvtColor(Region, cv2.COLOR_BGR2RGB)
RegionTorch = torch.from_numpy(RegionRgb.transpose(2, 0, 1)).unsqueeze(0).to(Device).float() / 255.0
UpscaledRegion = Model(RegionTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0 # type: ignore
UpscaledRegion = cv2.cvtColor(UpscaledRegion.astype('uint8'), cv2.COLOR_RGB2BGR)
RegionHeight, RegionWidth = Region.shape[:2]
UpscaledRegion = cv2.resize(UpscaledRegion, (RegionWidth, RegionHeight), interpolation=cv2.INTER_CUBIC)
Frame[Y1:Y2, X1:X2] = UpscaledRegion
OutputFrame = Frame
else:
Logger.info(f'πŸŸ₯ Frame {int(Video.get(cv2.CAP_PROP_POS_FRAMES))}: {SimilarityPercentage:.2f}% Similar, Upscaling Full Frame')
OutputFrame = Model(FrameForTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0 # type: ignore
OutputFrame = cv2.cvtColor(OutputFrame.astype('uint8'), cv2.COLOR_RGB2BGR)
OutputFrame = cv2.resize(OutputFrame, (Width, Height), interpolation=cv2.INTER_CUBIC)
CurrentFrameNumber = int(Video.get(cv2.CAP_PROP_POS_FRAMES))
if Times:
AverageTime = sum(Times) / len(Times)
Eta = HumanizeSeconds((FrameCount - CurrentFrameNumber) * AverageTime)
else:
Eta = None
Progress(FrameProgress, desc=f'πŸ“¦ Processed Frame {len(Times)+1}/{FrameCount} - {Eta}')
Logger.info(f'πŸ“¦ Processed Frame {len(Times)+1}/{FrameCount} - {Eta}')
cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameNumber:05d}.png', OutputFrame)
DeltaTime = time.time() - StartTime
Times.append(DeltaTime)
StartTime = time.time()
FrameProgress += PerFrameProgress
Progress(1, desc='πŸ“¦ Cleaning Up')
self.CleanUp()
return InputVideo, InputVideo
# ============================== #
# Streamlined UI #
# ============================== #
with App.Blocks(
title='Video Upscaler', theme=Theme, delete_cache=(-1, 1800)
) as Interface:
App.Markdown('# 🎞️ Video Upscaler')
App.Markdown('''
Space created by [Hyphonical](https://huggingface.co/Hyphonical), this space uses several models from [styler00dollar/VSGAN-tensorrt-docker](https://github.com/styler00dollar/VSGAN-tensorrt-docker/releases/tag/models)
You may always request adding more models by opening a [new discussion](https://huggingface.co/spaces/Hyphonical/Video2x/discussions/new). The main program uses spandrel to load the models and ffmpeg to process the video.
You may run out of time using the ZeroGPU, you could clone the space or run it locally for better performance.
''')
with App.Row():
with App.Column():
with App.Group():
with App.Accordion(label='πŸ“œ Instructions', open=False):
App.Markdown('''
### How To Use The Video Upscaler
1. **Upload A Video:** Begin by uploading your video file using the 'Input Video' section.
2. **Select A Model:** Choose an appropriate upscaling model from the 'Select Model' dropdown menu.
3. **Adjust Settings (Optional):**
Modify the 'Frame Rate' slider if you want to change the output video's frame rate.
Adjust the 'Tile Grid Size' for memory optimization. Larger models might require a higher grid size, but processing could be slower.
4. **Start Processing:** Click the 'πŸš€ Upscale Video' button to begin the upscaling process.
5. **Download The Result:** Once the process is complete, download the upscaled video using the 'πŸ’Ύ Download Video' button.
> Tip: If you get a CUDA out of memory error, try increasing the Tile Grid Size. This will split the image into smaller tiles for processing, which can help reduce memory usage.
''')
InputVideo = App.Video(
label='Input Video', sources=['upload'], height=300
)
ModelList = Upscaler().ListModels()
ModelNames = [Path(Model).stem for Model in ModelList]
InputModel = App.Dropdown(
choices=ModelNames,
label='Select Model',
value=ModelNames[0],
)
with App.Accordion(label='βš™οΈ Advanced Settings', open=False):
with App.Group():
InputUseRegions = App.Checkbox(
label='Use Regions',
value=False,
info='Use regions to upscale only the different parts of the video (⚑️ Experimental, Faster)',
interactive=True
)
InputThreshold = App.Slider(
label='Threshold',
value=5,
minimum=0,
maximum=20,
step=0.5,
info='Threshold for the SAD algorithm to detect different regions',
interactive=False
)
InputPadding = App.Slider(
label='Padding',
value=1,
minimum=0,
maximum=5,
step=1,
info='Extra padding to include neighboring pixels in the SAD algorithm',
interactive=False
)
InputMinPercentage = App.Slider(
label='Min Percentage',
value=70,
minimum=0,
maximum=100,
step=1,
info='Minimum percentage of similarity to consider upscaling the full frame',
interactive=False
)
InputMaxRectangles = App.Slider(
label='Max Rectangles',
value=8,
minimum=1,
maximum=10,
step=1,
info='Maximum number of rectangles to consider upscaling the full frame',
interactive=False
)
SubmitButton = App.Button('πŸš€ Upscale Video')
with App.Column(show_progress=True):
with App.Group():
OutputVideo = App.Video(
label='Output Video', height=300, interactive=False, format=None
)
OutputDownload = App.DownloadButton(
label='πŸ’Ύ Download Video', interactive=False
)
def ToggleRegionInputs(UseRegions):
return (
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
)
InputUseRegions.change(
fn=ToggleRegionInputs,
inputs=[InputUseRegions],
outputs=[InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding],
)
SubmitButton.click(
fn=Upscaler().Process,
inputs=[
InputVideo,
InputModel,
InputUseRegions,
InputThreshold,
InputMinPercentage,
InputMaxRectangles,
InputPadding
],
outputs=[OutputVideo, OutputDownload],
)
if __name__ == '__main__':
os.makedirs(ModelDir, exist_ok=True)
os.makedirs(TempDir, exist_ok=True)
Logger.info('πŸš€ Starting Video Upscaler')
Interface.launch(pwa=True)