Spaces:
Running
Running
File size: 12,699 Bytes
06faff1 44e7320 fa1e3ad 93be3f3 1051212 b52ede6 7074721 06faff1 9424917 fa1e3ad 9424917 b52ede6 dfbe477 01139ed b52ede6 9424917 b52ede6 1051212 06faff1 b52ede6 1051212 b52ede6 bc61590 a40135d bc61590 b52ede6 0222536 fa1e3ad b52ede6 1c4332a d3b24ed fa1e3ad b52ede6 d3b24ed b52ede6 fa1e3ad b52ede6 fa1e3ad b52ede6 1c4332a b52ede6 6903ce6 fa1e3ad 6903ce6 b52ede6 fa1e3ad 6903ce6 fa1e3ad 6903ce6 2e0be03 6475632 b1c35dc b52ede6 6475632 b52ede6 a40135d 1c4332a fa1e3ad 9a4695e b52ede6 b1c35dc 01139ed b52ede6 fa1e3ad 01139ed fa1e3ad 9a4695e a40135d 05bbd5c 01139ed a40135d 05bbd5c 0c8b92e 96ef08b 2c15b6c 0c8b92e 05bbd5c 5db7057 0b4d4e7 5db7057 2c15b6c 0c8b92e 96ef08b 2c15b6c 0c8b92e 2c15b6c 0c8b92e 05bbd5c 0c8b92e 2c15b6c 0c8b92e 2c15b6c 0c8b92e b52ede6 2e0be03 06faff1 b52ede6 2f4c490 b52ede6 2f4c490 b52ede6 60870ef b52ede6 d3b24ed 05bbd5c b52ede6 6903ce6 b52ede6 6903ce6 b52ede6 a40135d b52ede6 9424917 b52ede6 a40135d b52ede6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import gradio as gr
import pandas as pd
import gspread
from gspread_dataframe import set_with_dataframe
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta
from collections import Counter
# -------------------- AUTH --------------------
scope = [
"https://spreadsheets.google.com/feeds",
"https://www.googleapis.com/auth/drive"
]
creds = ServiceAccountCredentials.from_json_keyfile_name(
"deep-mile-461309-t8-0e90103411e0.json", scope
)
client = gspread.authorize(creds)
SHEET_URL = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
# -------------------- UTILS --------------------
def normalize_columns(cols):
return [c.strip().title() for c in cols]
def load_sheet_df(name):
ws = client.open_by_url(SHEET_URL).worksheet(name)
data = ws.get_all_values()
if not data:
return pd.DataFrame()
raw_header, *rows = data
counts = Counter()
header = []
for col in raw_header:
counts[col] += 1
if counts[col] > 1:
header.append(f"{col}_{counts[col]}")
else:
header.append(col)
header = normalize_columns(header)
return pd.DataFrame(rows, columns=header)
def get_current_week_range():
today = datetime.now().date()
start = today - timedelta(days=today.weekday())
end = start + timedelta(days=6)
return start, end
def filter_by_week(df, date_col, rep=None):
if date_col not in df.columns:
return pd.DataFrame([{"Error": f"Missing '{date_col}' column"}])
df = df.copy()
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date
start, end = get_current_week_range()
m = df[date_col].between(start, end)
if rep:
m &= df.get("Rep", pd.Series()).astype(str) == rep
return df[m]
def filter_by_date(df, date_col, y, m, d, rep=None):
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date"}])
if date_col not in df.columns:
return pd.DataFrame([{"Error": f"Missing '{date_col}' column"}])
df = df.copy()
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date
m = df[date_col] == target
if rep:
m &= df.get("Rep", pd.Series()).astype(str) == rep
return df[m]
def rep_choices(sheet, col="Rep"):
df = load_sheet_df(sheet)
return sorted(df[col].dropna().unique().tolist()) if col in df else []
# -------------------- REPORT FUNCTIONS --------------------
def get_calls(rep=None):
df = load_sheet_df("Calls")
return filter_by_week(df, "Call Date", rep)
def get_appointments(rep=None):
df = load_sheet_df("Appointments")
return filter_by_week(df, "Appointment Date", rep)
def search_calls(y, m, d, rep=None):
df = load_sheet_df("Calls")
return filter_by_date(df, "Call Date", y, m, d, rep)
def search_appointments(y, m, d, rep=None):
df = load_sheet_df("Appointments")
return filter_by_date(df, "Appointment Date", y, m, d, rep)
# -------------------- LEADS --------------------
def get_leads_detail():
df = load_sheet_df("AllocatedLeads")
return df
def get_leads_summary():
df = get_leads_detail()
if "Assigned Rep" not in df:
return pd.DataFrame([{"Error": "Missing 'Assigned Rep'"}])
return df.groupby("Assigned Rep").size().reset_index(name="Leads Count")
# -------------------- INSIGHTS --------------------
def compute_insights():
calls = get_calls()
appts = get_appointments()
leads = get_leads_detail()
def top(df, col="Rep"):
if col in df and not df.empty:
vc = df[col].value_counts()
return vc.idxmax() if not vc.empty else "N/A"
return "N/A"
data = [
{"Metric": "Most Calls This Week", "Rep": top(calls, "Rep")},
{"Metric": "Most Appointments This Week", "Rep": top(appts, "Rep")},
{"Metric": "Most Leads Allocated", "Rep": top(leads, "Assigned Rep")},
]
return pd.DataFrame(data)
# -------------------- USER MANAGEMENT --------------------
def load_users():
df = load_sheet_df("Users")
want = [
"Id", "Email", "Name", "Business", "Role",
"Daily Phone Call Target", "Daily Phone Appointment Target",
"Daily Quote Number Target", "Daily Quote Revenue Target",
"Weekly Phone Call Target", "Weekly Phone Appointment Target",
"Weekly Quote Number Target", "Weekly Quote Revenue Target",
"Monthly Phone Call Target", "Monthly Phone Appointment Target",
"Monthly Quote Number Target", "Monthly Quote Revenue Target",
"Monthly Sales Revenue Target"
]
exist = [c for c in want if c in df.columns]
return df[exist]
def save_users(df):
ws = client.open_by_url(SHEET_URL).worksheet("Users")
ws.clear()
set_with_dataframe(ws, df)
return "β
Users saved!"
# -------------------- QUOTES TAB UTILS --------------------
def get_quotes_df():
df = load_sheet_df("LiveQuotes")
df.columns = [c.strip() for c in df.columns]
return df
def rep_choices_quotes():
df = get_quotes_df()
return sorted(df["Rep"].dropna().unique().tolist()) if "Rep" in df else []
def quote_year_choices():
df = get_quotes_df()
if "Year" in df.columns:
years = sorted(df["Year"].dropna().unique().astype(str))
return years
if "Date" in df.columns:
years = pd.to_datetime(df["Date"], errors="coerce").dt.year.dropna().unique()
return sorted(years.astype(str))
return []
def quote_month_choices(year=None):
"""
Returns a sorted list of valid month strings for a given year, always at least [''].
Also prints debug output to help troubleshoot.
"""
df = get_quotes_df()
if (
year
and "Year" in df.columns
and "Month" in df.columns
and not df.empty
):
subset = df[df["Year"].astype(str) == str(year)]
if subset.empty:
print(f"[DEBUG] No quotes found for year {year}. Returning [''].")
return [""]
try:
months = pd.to_numeric(subset["Month"], errors="coerce").dropna().astype(int)
months = [str(m) for m in months if 1 <= m <= 12]
months = sorted(set(months))
result = [""] + months if months else [""]
print(f"[DEBUG] Year {year}: Months dropdown = {result}")
return result
except Exception as e:
print(f"[DEBUG] Exception in quote_month_choices for year {year}: {e}")
return [""]
print(f"[DEBUG] No valid year or columns missing. Returning [''].")
return [""]
def quotes_summary(year=None, month=None):
df = get_quotes_df()
if "Rep" not in df.columns or "Total" not in df.columns:
return pd.DataFrame([{"Error": "Missing Rep or Total column"}])
if year and "Year" in df.columns:
df = df[df["Year"].astype(str) == str(year)]
if month and "Month" in df.columns:
df = df[df["Month"].astype(str) == str(month)]
df["Total"] = pd.to_numeric(df["Total"].astype(str).str.replace(",", ""), errors="coerce")
summary = (
df.groupby("Rep")
.agg({"Document No.": "count", "Total": "sum"})
.rename(columns={"Document No.": "Total Quotes", "Total": "Total Value"})
.reset_index()
)
summary["Total Value"] = summary["Total Value"].fillna(0).round(2)
return summary
def get_rep_quotes_filtered(rep, year=None, month=None):
df = get_quotes_df()
if "Rep" not in df.columns:
return pd.DataFrame([{"Error": "Missing Rep column"}])
df = df[df["Rep"] == rep]
if year and "Year" in df.columns:
df = df[df["Year"].astype(str) == str(year)]
if month and "Month" in df.columns:
df = df[df["Month"].astype(str) == str(month)]
return df
def update_month_choices_summary(year):
months = quote_month_choices(year)
print(f"[DEBUG] update_month_choices_summary({year}) -> {months}")
return gr.Dropdown.update(choices=months, value="")
def update_month_choices(year):
months = quote_month_choices(year)
print(f"[DEBUG] update_month_choices({year}) -> {months}")
return gr.Dropdown.update(choices=months, value="")
# -------------------- UI LAYOUT --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
gr.Markdown("# π Graffiti Admin Dashboard")
# -- Calls Tab --
with gr.Tab("Calls Report"):
rep_c = gr.Dropdown(choices=rep_choices("Calls"), label="Filter by Rep", allow_custom_value=True)
btn_c = gr.Button("Load This Weekβs Calls")
tbl_c = gr.Dataframe()
btn_c.click(get_calls, rep_c, tbl_c)
gr.Markdown("### Search Calls by Date")
y1, m1, d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
rep_c2 = gr.Dropdown(choices=rep_choices("Calls"), label="Filter by Rep", allow_custom_value=True)
btn_c2 = gr.Button("Search")
tbl_c2 = gr.Dataframe()
btn_c2.click(search_calls, [y1, m1, d1, rep_c2], tbl_c2)
# -- Appointments Tab --
with gr.Tab("Appointments Report"):
rep_a = gr.Dropdown(choices=rep_choices("Appointments"), label="Filter by Rep", allow_custom_value=True)
btn_a = gr.Button("Load This Weekβs Appts")
sum_a = gr.Dataframe(label="π Appts by Rep")
tbl_a = gr.Dataframe()
def _load_appts(r):
df = get_appointments(r)
return df.groupby("Rep").size().reset_index(name="Count"), df
btn_a.click(_load_appts, rep_a, [sum_a, tbl_a])
gr.Markdown("### Search Appts by Date")
y2, m2, d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
rep_a2 = gr.Dropdown(choices=rep_choices("Appointments"), label="Filter by Rep", allow_custom_value=True)
btn_a2 = gr.Button("Search")
sum_a2 = gr.Dataframe(label="π Appts by Rep")
tbl_a2 = gr.Dataframe()
def _search_appts(y,m,d,r):
df = search_appointments(y,m,d,r)
return df.groupby("Rep").size().reset_index(name="Count"), df
btn_a2.click(_search_appts, [y2,m2,d2,rep_a2], [sum_a2, tbl_a2])
# -- Appointed Leads --
with gr.Tab("Allocated Leads"):
btn_l = gr.Button("View Leads")
sum_l = gr.Dataframe(label="π Leads by Rep")
det_l = gr.Dataframe(label="π Details")
btn_l.click(lambda: (get_leads_summary(), get_leads_detail()), None, [sum_l, det_l])
# -- Quotes Tab (NEW) --
with gr.Tab("Quotes"):
gr.Markdown("### π Quotes Summary by Rep")
year_qs = gr.Dropdown(choices=[""] + quote_year_choices(), label="Year (optional)", value="")
month_qs = gr.Dropdown(choices=[""], label="Month (optional, needs year)", value="")
btn_qs = gr.Button("Show Quotes Summary")
sum_qs = gr.Dataframe(label="Summary by Rep")
# Dynamic month options for summary
year_qs.change(update_month_choices_summary, year_qs, month_qs)
def quotes_summary_wrapper(year, month):
return quotes_summary(year if year else None, month if month else None)
btn_qs.click(quotes_summary_wrapper, [year_qs, month_qs], sum_qs)
gr.Markdown("### π View All Quotes for a Rep, Year, and Month")
rep_q = gr.Dropdown(choices=rep_choices_quotes(), label="Select Rep")
year_q = gr.Dropdown(choices=[""] + quote_year_choices(), label="Year (optional)", value="")
month_q = gr.Dropdown(choices=[""], label="Month (optional, needs year)", value="")
btn_qr = gr.Button("Show Quotes")
tbl_qr = gr.Dataframe(label="Quotes for Selection")
# Dynamic month options for rep quotes
year_q.change(update_month_choices, year_q, month_q)
def get_rep_quotes_filtered_wrapper(rep, year, month):
return get_rep_quotes_filtered(rep, year if year else None, month if month else None)
btn_qr.click(get_rep_quotes_filtered_wrapper, [rep_q, year_q, month_q], tbl_qr)
# -- Insights --
with gr.Tab("Insights"):
btn_i = gr.Button("Generate Insights")
out_i = gr.Dataframe()
btn_i.click(compute_insights, None, out_i)
# -- User Management --
with gr.Tab("User Management"):
gr.Markdown("## π€ Manage Users\nEdit the grid below then click **Save Users** to push back to the sheet.")
users_tbl = gr.Dataframe(value=load_users(), interactive=True)
save_btn = gr.Button("Save Users")
save_out = gr.Textbox()
save_btn.click(save_users, users_tbl, save_out)
app.launch()
|