Spaces:
Sleeping
Sleeping
File size: 3,525 Bytes
cdb1e03 8c9ba89 cdb1e03 8c9ba89 cdb1e03 ae3b9ed cdb1e03 8e6a5e9 cdb1e03 8e6a5e9 cdb1e03 8c9ba89 cdb1e03 8e6a5e9 cdb1e03 8c9ba89 cdb1e03 790cf10 8e6a5e9 be9eb51 cdb1e03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import sentencepiece as spm
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
from valx import detect_profanity, detect_hate_speech
import gradio as gr
sp = spm.SentencePieceProcessor()
sp.Load("dungen_dev_1_2.model")
model = tf.keras.models.load_model("dungen_dev_1_2.keras")
max_seq_len = 26
def generate_text(seed_text, next_words=30, temperature=0.5):
seed_text = seed_text.strip().lower()
if "|" in seed_text:
gr.Warning("The prompt should not contain the '|' character. Using default prompt.")
seed_text = 'game name | '
elif detect_profanity([seed_text], language='All'):
gr.Warning("Profanity detected in the prompt, using the default prompt.")
seed_text = 'game name | '
elif (hate_speech_result := detect_hate_speech(seed_text)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
gr.Warning('Harmful speech detected in the prompt, using default prompt.')
seed_text = 'game name | '
else:
seed_text += ' | '
generated_text = seed_text
if generated_text != 'game name | ': # only generate if not the default prompt
for _ in range(next_words):
token_list = sp.encode_as_ids(generated_text)
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
predicted = model.predict(token_list, verbose=0)[0]
predicted = np.asarray(predicted).astype("float64")
predicted = np.log(predicted + 1e-8) / temperature
exp_preds = np.exp(predicted)
predicted = exp_preds / np.sum(exp_preds)
next_index = np.random.choice(len(predicted), p=predicted)
next_token = sp.id_to_piece(next_index)
generated_text += next_token
if next_token.endswith('</s>') or next_token.endswith('<unk>'):
break
decoded = sp.decode_pieces(sp.encode_as_pieces(generated_text))
decoded = decoded.replace("</s>", "").replace("<unk>", "").strip()
if '|' in decoded:
decoded = decoded.split('|', 1)[1].strip()
if any(detect_profanity([decoded], language='All')) or (hate_speech_result := detect_hate_speech(decoded)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
gr.Warning("Flagged potentially harmful output.")
decoded = 'Flagged Output'
return decoded
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
gr.Slider(1, 100, step=1, label='Next Words', value=30),
gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probabilistic')
],
outputs=gr.Textbox(label="Generated Names"),
title='Dungen Dev - Name Generator',
description='Dungen Dev v1.2<br><br>A prompt-based name generator for game developers.<br>This new version of Dungen Dev improves upon previous versions, improving understanding of context.<br><br><h2>Disclaimer</h2>Dungen Dev is an experimental model and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
examples=[
["male character name", 30, 0.75],
["futuristic city name", 30, 0.75],
["item name", 30, 0.75],
["dark and mysterious forest name", 30, 0.75],
["evil character name", 30, 0.75]
]
)
demo.launch() |