embedding-model / app.py
IotaCluster's picture
Create app.py
649d5f9 verified
raw
history blame
733 Bytes
import gradio as gr
from sentence_transformers import SentenceTransformer
# Load the multilingual embedding model
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
# Define a function to embed text
def embed(text: str):
if not text.strip():
return {"error": "Input text is empty."}
embedding = model.encode([text])[0] # Get the embedding vector
return {"embedding": embedding.tolist()}
# Launch Gradio interface
demo = gr.Interface(
fn=embed,
inputs=gr.Textbox(lines=3, label="Input Text"),
outputs="json",
title="Multilingual Text Embedder",
description="Uses paraphrase-multilingual-MiniLM-L12-v2 to convert text into embeddings"
)
demo.launch()