Spaces:
Running
Running
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
# Load the multilingual embedding model | |
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
# Define a function to embed text | |
def embed(text: str): | |
if not text.strip(): | |
return {"error": "Input text is empty."} | |
embedding = model.encode([text])[0] # Get the embedding vector | |
return {"embedding": embedding.tolist()} | |
# Launch Gradio interface | |
demo = gr.Interface( | |
fn=embed, | |
inputs=gr.Textbox(lines=3, label="Input Text"), | |
outputs="json", | |
title="Multilingual Text Embedder", | |
description="Uses paraphrase-multilingual-MiniLM-L12-v2 to convert text into embeddings" | |
) | |
demo.launch() |