Spaces:
Runtime error
Runtime error
File size: 5,448 Bytes
588b982 1a7cf31 588b982 1a7cf31 588b982 1a7cf31 588b982 1a7cf31 588b982 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 588b982 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 588b982 1a7cf31 588b982 1a7cf31 5f5d00b 588b982 1a7cf31 588b982 1a7cf31 5f5d00b 588b982 1a7cf31 588b982 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 588b982 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 5f5d00b 1a7cf31 588b982 1a7cf31 588b982 1a7cf31 588b982 1a7cf31 588b982 1a7cf31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import functools
from dotenv import load_dotenv
from supabase.client import create_client, Client
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.tools import tool
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool
load_dotenv()
def _format_search_results(docs, label: str, truncate: int = None) -> dict:
"""Helper to format document search results."""
entries = []
for d in docs:
content = d.page_content if truncate is None else d.page_content[:truncate]
entries.append(
f'<Document source="{d.metadata.get("source","")}" '
f'page="{d.metadata.get("page","")}"/>\n{content}\n</Document>'
)
return {label: "\n\n---\n\n".join(entries)}
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return _format_search_results(docs, "wiki_results")
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
docs = TavilySearchResults(max_results=3).invoke(query=query)
return _format_search_results(docs, "web_results")
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
return _format_search_results(docs, "arvix_results", truncate=1000)
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever once
_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
_supabase: Client = create_client(
os.environ["SUPABASE_URL"], os.environ["SUPABASE_SERVICE_KEY"]
)
_vector_store = SupabaseVectorStore(
client=_supabase,
embedding=_embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
_retriever = _vector_store.as_retriever()
_question_search_tool = create_retriever_tool(
retriever=_retriever,
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
_question_search_tool,
]
_LLM_PROVIDERS = {
"google": lambda: ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0),
"groq": lambda: ChatGroq(model="qwen-qwq-32b", temperature=0),
"huggingface": lambda: ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
)
),
}
@functools.lru_cache(maxsize=None)
def get_llm(provider: str):
"""
Retrieve and cache the LLM client for the given provider.
"""
try:
return _LLM_PROVIDERS[provider]()
except KeyError:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
def build_graph(provider: str = "google"):
"""Build the graph"""
llm = get_llm(provider).bind_tools(tools)
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm.invoke(state["messages"])]}
def retriever(state: MessagesState):
query = state["messages"][-1].content
doc = _retriever.similarity_search(query, k=1)[0]
content = doc.page_content
if "Final answer :" in content:
answer = content.split("Final answer :")[-1].strip()
else:
answer = content.strip()
return {"messages": [AIMessage(content=answer)]}
graph = StateGraph(MessagesState)
graph.add_node("retriever", retriever)
graph.set_entry_point("retriever")
graph.set_finish_point("retriever")
return graph.compile()
|