File size: 5,448 Bytes
588b982
1a7cf31
588b982
1a7cf31
588b982
1a7cf31
588b982
 
 
 
1a7cf31
588b982
 
 
 
 
 
 
1a7cf31
 
 
 
 
 
 
 
 
 
5f5d00b
1a7cf31
 
 
5f5d00b
1a7cf31
 
5f5d00b
1a7cf31
5f5d00b
1a7cf31
 
 
 
5f5d00b
1a7cf31
 
5f5d00b
 
 
1a7cf31
5f5d00b
1a7cf31
 
 
 
 
5f5d00b
1a7cf31
5f5d00b
1a7cf31
 
 
 
 
 
 
5f5d00b
 
 
588b982
 
1a7cf31
5f5d00b
1a7cf31
 
5f5d00b
1a7cf31
 
5f5d00b
1a7cf31
588b982
 
1a7cf31
 
 
 
 
588b982
1a7cf31
5f5d00b
588b982
1a7cf31
 
 
 
 
588b982
1a7cf31
5f5d00b
588b982
1a7cf31
 
 
 
 
588b982
1a7cf31
5f5d00b
1a7cf31
 
 
5f5d00b
1a7cf31
 
588b982
1a7cf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f5d00b
1a7cf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f5d00b
1a7cf31
 
5f5d00b
1a7cf31
 
5f5d00b
1a7cf31
5f5d00b
1a7cf31
 
 
 
 
 
 
588b982
 
1a7cf31
 
 
 
 
588b982
1a7cf31
 
 
 
 
 
 
588b982
 
1a7cf31
588b982
1a7cf31
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import functools
from dotenv import load_dotenv
from supabase.client import create_client, Client
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.tools import tool
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool

load_dotenv()

def _format_search_results(docs, label: str, truncate: int = None) -> dict:
    """Helper to format document search results."""
    entries = []
    for d in docs:
        content = d.page_content if truncate is None else d.page_content[:truncate]
        entries.append(
            f'<Document source="{d.metadata.get("source","")}" '
            f'page="{d.metadata.get("page","")}"/>\n{content}\n</Document>'
        )
    return {label: "\n\n---\n\n".join(entries)}

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    docs = WikipediaLoader(query=query, load_max_docs=2).load()
    return _format_search_results(docs, "wiki_results")

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    docs = TavilySearchResults(max_results=3).invoke(query=query)
    return _format_search_results(docs, "web_results")

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    return _format_search_results(docs, "arvix_results", truncate=1000)

# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# build a retriever once
_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
_supabase: Client = create_client(
    os.environ["SUPABASE_URL"], os.environ["SUPABASE_SERVICE_KEY"]
)
_vector_store = SupabaseVectorStore(
    client=_supabase,
    embedding=_embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
_retriever = _vector_store.as_retriever()
_question_search_tool = create_retriever_tool(
    retriever=_retriever,
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
    _question_search_tool,
]

_LLM_PROVIDERS = {
    "google": lambda: ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0),
    "groq": lambda: ChatGroq(model="qwen-qwq-32b", temperature=0),
    "huggingface": lambda: ChatHuggingFace(
        llm=HuggingFaceEndpoint(
            url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            temperature=0,
        )
    ),
}

@functools.lru_cache(maxsize=None)
def get_llm(provider: str):
    """
    Retrieve and cache the LLM client for the given provider.
    """
    try:
        return _LLM_PROVIDERS[provider]()
    except KeyError:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")

def build_graph(provider: str = "google"):
    """Build the graph"""
    llm = get_llm(provider).bind_tools(tools)

    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        query = state["messages"][-1].content
        doc = _retriever.similarity_search(query, k=1)[0]
        content = doc.page_content
        if "Final answer :" in content:
            answer = content.split("Final answer :")[-1].strip()
        else:
            answer = content.strip()
        return {"messages": [AIMessage(content=answer)]}

    graph = StateGraph(MessagesState)
    graph.add_node("retriever", retriever)
    graph.set_entry_point("retriever")
    graph.set_finish_point("retriever")
    return graph.compile()