JasonSmithSO's picture
Upload 777 files
0034848 verified
import torchvision # Fix issue Unknown builtin op: torchvision::nms
import cv2
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from PIL import Image
from custom_controlnet_aux.util import HWC3, resize_image_with_pad, common_input_validate, custom_hf_download, DENSEPOSE_MODEL_NAME
from .densepose import DensePoseMaskedColormapResultsVisualizer, _extract_i_from_iuvarr, densepose_chart_predictor_output_to_result_with_confidences
N_PART_LABELS = 24
class DenseposeDetector:
def __init__(self, model):
self.dense_pose_estimation = model
self.device = "cpu"
self.result_visualizer = DensePoseMaskedColormapResultsVisualizer(
alpha=1,
data_extractor=_extract_i_from_iuvarr,
segm_extractor=_extract_i_from_iuvarr,
val_scale = 255.0 / N_PART_LABELS
)
@classmethod
def from_pretrained(cls, pretrained_model_or_path=DENSEPOSE_MODEL_NAME, filename="densepose_r50_fpn_dl.torchscript"):
torchscript_model_path = custom_hf_download(pretrained_model_or_path, filename)
densepose = torch.jit.load(torchscript_model_path, map_location="cpu")
return cls(densepose)
def to(self, device):
self.dense_pose_estimation.to(device)
self.device = device
return self
def __call__(self, input_image, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", cmap="viridis", **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
H, W = input_image.shape[:2]
hint_image_canvas = np.zeros([H, W], dtype=np.uint8)
hint_image_canvas = np.tile(hint_image_canvas[:, :, np.newaxis], [1, 1, 3])
input_image = rearrange(torch.from_numpy(input_image).to(self.device), 'h w c -> c h w')
pred_boxes, corase_segm, fine_segm, u, v = self.dense_pose_estimation(input_image)
extractor = densepose_chart_predictor_output_to_result_with_confidences
densepose_results = [extractor(pred_boxes[i:i+1], corase_segm[i:i+1], fine_segm[i:i+1], u[i:i+1], v[i:i+1]) for i in range(len(pred_boxes))]
if cmap=="viridis":
self.result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_VIRIDIS
hint_image = self.result_visualizer.visualize(hint_image_canvas, densepose_results)
hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB)
hint_image[:, :, 0][hint_image[:, :, 0] == 0] = 68
hint_image[:, :, 1][hint_image[:, :, 1] == 0] = 1
hint_image[:, :, 2][hint_image[:, :, 2] == 0] = 84
else:
self.result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_PARULA
hint_image = self.result_visualizer.visualize(hint_image_canvas, densepose_results)
hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB)
detected_map = remove_pad(HWC3(hint_image))
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map