JasonSmithSO's picture
Upload 777 files
0034848 verified
"""
Hello, welcome on board,
"""
from __future__ import print_function
import os
import cv2
import numpy as np
import torch
from .ted import TED # TEED architecture
from einops import rearrange
from custom_controlnet_aux.util import safe_step, custom_hf_download, BDS_MODEL_NAME, common_input_validate, resize_image_with_pad, HWC3
from PIL import Image
class TEDDetector:
def __init__(self, model):
self.model = model
self.device = "cpu"
@classmethod
def from_pretrained(cls, pretrained_model_or_path=BDS_MODEL_NAME, filename="7_model.pth", subfolder="Annotators"):
model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder=subfolder)
model = TED()
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.eval()
return cls(model)
def to(self, device):
self.model.to(device)
self.device = device
return self
def __call__(self, input_image, detect_resolution=512, safe_steps=2, upscale_method="INTER_CUBIC", output_type="pil", **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
H, W, _ = input_image.shape
with torch.no_grad():
image_teed = torch.from_numpy(input_image.copy()).float().to(self.device)
image_teed = rearrange(image_teed, 'h w c -> 1 c h w')
edges = self.model(image_teed)
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
edges = np.stack(edges, axis=2)
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
if safe_steps != 0:
edge = safe_step(edge, safe_steps)
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
detected_map = remove_pad(HWC3(edge))
if output_type == "pil":
detected_map = Image.fromarray(detected_map[..., :3])
return detected_map