Homo_hetero / app.py
Jayesh13's picture
Update app.py
690d85c verified
raw
history blame
8.96 kB
import os
os.system("pip install streamlit pandas xlsxwriter openpyxl")
import streamlit as st
import pandas as pd
import xlsxwriter
from io import BytesIO
from collections import defaultdict
import hashlib
import sqlite3
import base64
# Initialize DB
def init_db():
conn = sqlite3.connect("file_cache.db")
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS file_cache (
file_hash TEXT PRIMARY KEY,
file_name TEXT,
analysis_type TEXT,
result BLOB
)
''')
conn.commit()
conn.close()
init_db()
# Hashing function
def get_file_hash(file):
return hashlib.sha256(file.read()).hexdigest()
# Check if file hash exists in DB
def check_cache(file_hash, analysis_type):
conn = sqlite3.connect("file_cache.db")
cursor = conn.cursor()
cursor.execute("SELECT result FROM file_cache WHERE file_hash = ? AND analysis_type = ?", (file_hash, analysis_type))
row = cursor.fetchone()
conn.close()
if row:
return BytesIO(base64.b64decode(row[0]))
return None
# Store result in DB
def cache_result(file_hash, file_name, analysis_type, result_bytes):
conn = sqlite3.connect("file_cache.db")
cursor = conn.cursor()
cursor.execute(
"INSERT OR REPLACE INTO file_cache (file_hash, file_name, analysis_type, result) VALUES (?, ?, ?, ?)",
(file_hash, file_name, analysis_type, base64.b64encode(result_bytes.read()).decode('utf-8'))
)
conn.commit()
conn.close()
# === Protein Analysis Logic ===
def is_homo_repeat(s):
return all(c == s[0] for c in s)
def find_homorepeats(protein):
n = len(protein)
freq = defaultdict(int)
i = 0
while i < n:
curr = protein[i]
repeat = ""
while i < n and curr == protein[i]:
repeat += protein[i]
i += 1
if len(repeat) > 1:
freq[repeat] += 1
return freq
def find_hetero_amino_acid_repeats(sequence):
repeat_counts = defaultdict(int)
for length in range(2, len(sequence) + 1):
for i in range(len(sequence) - length + 1):
substring = sequence[i:i+length]
repeat_counts[substring] += 1
return {k: v for k, v in repeat_counts.items() if v > 1}
def fragment_protein_sequence(sequence, max_length=1000):
return [sequence[i:i+max_length] for i in range(0, len(sequence), max_length)]
def check_boundary_repeats(fragments, final_repeats, overlap=50):
for i in range(len(fragments) - 1):
left_overlap = fragments[i][-overlap:]
right_overlap = fragments[i + 1][:overlap]
overlap_region = left_overlap + right_overlap
boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
for substring, count in boundary_repeats.items():
if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
final_repeats[substring] += count
return final_repeats
def find_new_boundary_repeats(fragments, final_repeats, overlap=50):
new_repeats = defaultdict(int)
for i in range(len(fragments) - 1):
left_overlap = fragments[i][-overlap:]
right_overlap = fragments[i + 1][:overlap]
overlap_region = left_overlap + right_overlap
boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
for substring, count in boundary_repeats.items():
if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
if substring not in final_repeats:
new_repeats[substring] += count
return new_repeats
def process_protein_sequence(sequence, analysis_type, overlap=50):
fragments = fragment_protein_sequence(sequence)
final_repeats = defaultdict(int)
if analysis_type == "Hetero":
for fragment in fragments:
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
for k, v in fragment_repeats.items():
final_repeats[k] += v
final_repeats = check_boundary_repeats(fragments, final_repeats, overlap)
new_repeats = find_new_boundary_repeats(fragments, final_repeats, overlap)
for k, v in new_repeats.items():
final_repeats[k] += v
final_repeats = {k: v for k, v in final_repeats.items() if not is_homo_repeat(k)}
elif analysis_type == "Homo":
final_repeats = find_homorepeats(sequence)
elif analysis_type == "Both":
hetero_repeats = defaultdict(int)
for fragment in fragments:
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
for k, v in fragment_repeats.items():
hetero_repeats[k] += v
hetero_repeats = check_boundary_repeats(fragments, hetero_repeats)
new_repeats = find_new_boundary_repeats(fragments, hetero_repeats)
for k, v in new_repeats.items():
hetero_repeats[k] += v
hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
homo_repeats = find_homorepeats(sequence)
final_repeats = homo_repeats.copy()
for k, v in hetero_repeats.items():
final_repeats[k] += v
return final_repeats
def process_excel(excel_data, analysis_type):
repeats = set()
sequence_data = []
for sheet_name in excel_data.sheet_names:
df = excel_data.parse(sheet_name)
if len(df.columns) < 3:
st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence")
return None, None
for _, row in df.iterrows():
entry_id = str(row[0])
protein_name = str(row[1])
sequence = str(row[2]).replace('"', '').replace(' ', '')
freq = process_protein_sequence(sequence, analysis_type)
sequence_data.append((entry_id, protein_name, freq))
repeats.update(freq.keys())
return repeats, sequence_data
def create_excel(sequences_data, repeats, filenames):
output = BytesIO()
workbook = xlsxwriter.Workbook(output, {'in_memory': True})
for file_index, file_data in enumerate(sequences_data):
filename = filenames[file_index]
worksheet = workbook.add_worksheet(filename[:31])
worksheet.write(0, 0, "Entry ID")
worksheet.write(0, 1, "Protein Name")
col = 2
for repeat in sorted(repeats):
worksheet.write(0, col, repeat)
col += 1
row = 1
for entry_id, protein_name, freq in file_data:
worksheet.write(row, 0, entry_id)
worksheet.write(row, 1, protein_name)
col = 2
for repeat in sorted(repeats):
worksheet.write(row, col, freq.get(repeat, 0))
col += 1
row += 1
workbook.close()
output.seek(0)
return output
# === Streamlit UI ===
st.title("Protein Repeat Analysis with Caching")
analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
if uploaded_files:
all_repeats = set()
all_sequences_data = []
filenames = []
final_output = BytesIO()
for file in uploaded_files:
file.seek(0)
file_hash = get_file_hash(file)
file.seek(0)
cached = check_cache(file_hash, analysis_type)
if cached:
st.success(f"Using cached result for {file.name}")
cached_content = cached.read()
final_output.write(cached_content)
final_output.seek(0)
else:
st.info(f"Processing {file.name}...")
excel_data = pd.ExcelFile(file)
repeats, sequence_data = process_excel(excel_data, analysis_type)
if repeats is not None:
all_repeats.update(repeats)
all_sequences_data.append(sequence_data)
filenames.append(file.name)
excel_file = create_excel(all_sequences_data, all_repeats, filenames)
cache_result(file_hash, file.name, analysis_type, excel_file)
final_output = excel_file
st.download_button(
label="Download Excel file",
data=final_output,
file_name="protein_repeat_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if st.checkbox("Show Results Table"):
rows = []
for file_index, file_data in enumerate(all_sequences_data):
filename = filenames[file_index]
for entry_id, protein_name, freq in file_data:
row = {"Filename": filename, "Entry ID": entry_id, "Protein Name": protein_name}
row.update({repeat: freq.get(repeat, 0) for repeat in sorted(all_repeats)})
rows.append(row)
result_df = pd.DataFrame(rows)
st.dataframe(result_df)