File size: 9,349 Bytes
e5be70f
7a0020b
e5be70f
7a0020b
e5be70f
7a0020b
64e7c31
 
 
7a0020b
 
 
 
 
 
e5be70f
 
 
 
 
 
7a0020b
 
 
c111c20
 
e5be70f
c111c20
e5be70f
 
 
 
c111c20
64e7c31
e5be70f
 
 
c111c20
e5be70f
 
 
7a0020b
 
c111c20
 
7a0020b
c111c20
7a0020b
 
e5be70f
 
 
 
 
7a0020b
c111c20
7a0020b
 
 
 
c111c20
7a0020b
c111c20
 
7a0020b
 
 
 
c111c20
7a0020b
 
 
 
64e7c31
7a0020b
 
 
c111c20
7a0020b
 
 
 
 
 
 
 
 
e5be70f
 
c111c20
7a0020b
 
 
c111c20
e5be70f
7a0020b
c111c20
7a0020b
 
 
 
 
e5be70f
 
7a0020b
 
 
 
 
 
 
64e7c31
7a0020b
 
 
 
e5be70f
7a0020b
 
 
e5be70f
 
7a0020b
c111c20
7a0020b
e5be70f
 
 
7a0020b
e5be70f
7a0020b
 
 
c111c20
7a0020b
64e7c31
e5be70f
64e7c31
c111c20
7a0020b
e5be70f
64e7c31
7a0020b
 
e5be70f
 
c111c20
e5be70f
c111c20
e5be70f
 
 
 
 
 
 
c111c20
e5be70f
 
 
 
7a0020b
 
c111c20
e5be70f
 
 
 
 
7a0020b
64e7c31
 
 
 
7a0020b
64e7c31
7a0020b
 
64e7c31
7a0020b
 
c111c20
7a0020b
64e7c31
7a0020b
 
c111c20
7a0020b
 
 
e5be70f
 
64e7c31
7a0020b
 
e5be70f
7a0020b
 
 
 
 
 
64e7c31
7a0020b
 
 
 
64e7c31
 
 
 
 
 
 
 
c111c20
64e7c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import re
import json
from pathlib import Path
from typing import List, Dict, Optional, Any
from dataclasses import dataclass, field
from logger_config import config_logger

logger = config_logger(__name__)

@dataclass
class TaskmasterDialogue:
    conversation_id: str
    instruction_id: Optional[str]
    scenario: Optional[str]
    domain: Optional[str]
    turns: List[Dict[str, Any]]
    original_metadata: Dict[str, Any] = field(default_factory=dict)
    
    def __str__(self):
        return f"TaskmasterDialogue(conversation_id={self.conversation_id}, turns={len(self.turns)} turns)"
    
    def validate(self) -> bool:
        return bool(self.conversation_id and isinstance(self.turns, list))
    
class RawDataProcessingConfig:
    """
    Simple config for raw dataset processing
    """
    def __init__(
        self, 
        debug: bool = True,
        max_length: int = 512,
        min_turns: int = 4, 
        min_user_words: int = 3
    ):
        self.debug = debug
        self.max_length = max_length
        self.min_turns = min_turns
        self.min_user_words = min_user_words

class TaskmasterProcessor:
    """
    Load Taskmaster-1 dialogues, extracts domain.
    Clean, filter, save to pipeline format.
    """
    def __init__(self, config: RawDataProcessingConfig):
        self.config = config
    
    def load_taskmaster_dataset(
        self, 
        base_dir: str, 
        max_examples: Optional[int] = None
    ) -> List[TaskmasterDialogue]:
        """
        Load & parse Taskmaster-1 JSON for self-dialogs & woz-dialogs.
        """
        required_files = {
            "self-dialogs": "self-dialogs.json",
            "woz-dialogs": "woz-dialogs.json",
            "ontology": "ontology.json",
        }
        
        # Check for missing files
        missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
        if missing:
            raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
        
        # Load ontology
        ontology_path = Path(base_dir, required_files["ontology"])
        with open(ontology_path, 'r', encoding='utf-8') as f:
            ontology = json.load(f)
            if self.config.debug:
                logger.info(f"[TaskmasterProcessor] Loaded ontology with {len(ontology.keys())} top-level keys (unused).")
        
        dialogues: List[TaskmasterDialogue] = []
        
        # Process each file
        file_keys = ["self-dialogs", "woz-dialogs"]
        for file_key in file_keys:
            file_path = Path(base_dir, required_files[file_key])
            with open(file_path, 'r', encoding='utf-8') as f:
                raw_data = json.load(f)
            
            for d in raw_data:
                conversation_id = d.get("conversation_id", "")
                instruction_id = d.get("instruction_id", None)
                scenario_text = d.get("scenario", "")
                
                # Handle utterances
                utterances = d.get("utterances", [])
                turns = self._process_utterances(utterances)

                # Detect Domain
                domain = self._extract_domain(scenario_text, turns)

                # Build the object
                new_dlg = TaskmasterDialogue(
                    conversation_id=conversation_id,
                    instruction_id=instruction_id,
                    scenario=scenario_text,
                    domain=domain,
                    turns=turns,
                    original_metadata={}
                )
                dialogues.append(new_dlg)
                
                if max_examples and len(dialogues) >= max_examples:
                    break
        
        if self.config.debug:
            logger.info(f"[TaskmasterProcessor] Loaded {len(dialogues)} total dialogues from Taskmaster-1.")
        return dialogues
    
    def _extract_domain(self, scenario: str, turns: List[Dict[str, str]]) -> str:
        """
        Combine scenario text + all turn texts to detect domain more robustly.
        """
        combined_text = scenario.lower()
        for turn in turns:
            txt = turn.get('text', '').lower()
            combined_text += " " + txt

        # Domain patterns
        domain_patterns = {
            'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat|hungry)\b',
            'movie': r'\b(movie|cinema|film|ticket|showtime|theater|flick|screening)\b',
            'ride_share': r'\b(ride|taxi|uber|lyft|car\s?service|pickup|dropoff|driver)\b',
            'coffee': r'\b(coffee|café|cafe|starbucks|espresso|latte|mocha|americano)\b',
            'pizza': r'\b(pizza|delivery|order\s?food|pepperoni|topping|pizzeria|slice)\b',
            'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
        }

        for domain, pattern in domain_patterns.items():
            if re.search(pattern, combined_text):
                # Optional: logger.info if debug
                if self.config.debug:
                    logger.info(f"Matched domain: {domain} in scenario/turns")
                return domain
        
        if self.config.debug:
            logger.info("No domain match, returning 'other'")
        return 'other'
    
    def _clean_text(self, text: str) -> str:
        """
        Simple text normalization
        """
        # Strip multiple spaces, remove unnecessary punctuation
        text = re.sub(r'\s+', ' ', text)
        text = re.sub(r'([!?.,])\1+', r'\1', text)
        return text.strip()

    def _is_numeric_line(self, text: str) -> bool:
        """
        Return True if line is purely digits/punctuation/spaces, 
        e.g. "4 3 13" and similar found in Taskmaster-1 dataset.
        """
        pattern = r'^[\s]*[\d]+([\s\d.,]+)*[\s]*$'
        return bool(re.match(pattern, text))

    def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
        """
        Filter out dialogues that don't meet min length requirements. Convert to pipeline format.
            {
              "dialogue_id": "...",
              "domain": "...",
              "turns": [ {"speaker": "user", "text": "..."}, ... ]
            }
        """
        total = len(dialogues)
        invalid = 0
        too_few_turns = 0
        short_user_turns = 0
        results = []
        
        for dlg in dialogues:
            if not dlg.validate():
                invalid += 1
                continue
            
            # Skip if too few turns
            if len(dlg.turns) < self.config.min_turns:
                too_few_turns += 1
                continue
            
            # Skip if any user turn is too short
            keep = True
            for turn in dlg.turns:
                if turn['speaker'] == 'user':
                    words_count = len(turn['text'].split())
                    if words_count < self.config.min_user_words:
                        short_user_turns += 1
                        keep = False
                        break
            
            if not keep:
                continue
            
            pipeline_dlg = {
                'dialogue_id': dlg.conversation_id,
                'domain': dlg.domain,
                'turns': dlg.turns
            }
            results.append(pipeline_dlg)
        
        if self.config.debug:
            logger.info(f"\nFiltering Statistics:")
            logger.info(f"Total dialogues: {total}")
            logger.info(f"Invalid dialogues: {invalid}")
            logger.info(f"Too few turns: {too_few_turns}")
            logger.info(f"Short user turns: {short_user_turns}")
            logger.info(f"Remaining dialogues: {len(results)}")
            logger.info(f"Filtering rate: {((total - len(results)) / total) * 100:.1f}%\n")
            
        return results
        
    def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
        """Added logging to track utterance filtering"""
        total = len(utterances)
        empty = 0
        numeric = 0
        too_short = 0
        cleaned_turns = []
        
        for utt in utterances:
            speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
            raw_text = utt.get('text', '').strip()
            
            text = self._clean_text(raw_text)

            if not text:
                empty += 1
                continue

            if self._is_numeric_line(text):
                numeric += 1
                continue

            if len(text.split()) < 3:
                too_short += 1
                continue

            cleaned_turns.append({
                'speaker': speaker,
                'text': text
            })
            
        if self.config.debug and total > 0:
            logger.info(f"\nUtterance Cleaning Statistics (Dialogue {utterances[0].get('conversation_id', 'unknown')}):")
            logger.info(f"Total utterances: {total}")
            logger.info(f"Empty/blank: {empty}")
            logger.info(f"Numeric only: {numeric}")
            logger.info(f"Too short (<3 words): {too_short}")
            logger.info(f"Remaining turns: {len(cleaned_turns)}")
            logger.info(f"Filtering rate: {((total - len(cleaned_turns)) / total) * 100:.1f}%\n")
            
        return cleaned_turns