File size: 8,192 Bytes
e5be70f
7a0020b
e5be70f
7a0020b
e5be70f
7a0020b
 
 
 
 
 
 
e5be70f
 
 
 
 
 
7a0020b
 
 
c111c20
 
e5be70f
c111c20
e5be70f
 
 
 
c111c20
e5be70f
 
 
 
c111c20
e5be70f
 
 
7a0020b
 
c111c20
 
7a0020b
c111c20
7a0020b
 
e5be70f
 
 
 
 
7a0020b
c111c20
7a0020b
 
 
 
c111c20
7a0020b
c111c20
 
7a0020b
 
 
 
c111c20
7a0020b
 
 
 
 
 
 
 
c111c20
7a0020b
 
 
 
 
 
 
 
 
e5be70f
 
c111c20
7a0020b
 
 
c111c20
e5be70f
7a0020b
c111c20
7a0020b
 
 
 
 
e5be70f
 
7a0020b
 
 
 
 
 
 
 
 
 
 
 
e5be70f
7a0020b
 
 
e5be70f
 
7a0020b
c111c20
7a0020b
e5be70f
 
 
7a0020b
e5be70f
7a0020b
 
 
c111c20
7a0020b
e5be70f
 
c111c20
 
7a0020b
e5be70f
 
7a0020b
 
 
e5be70f
c111c20
 
e5be70f
 
7a0020b
 
e5be70f
 
c111c20
e5be70f
 
c111c20
 
e5be70f
 
c111c20
 
e5be70f
 
c111c20
e5be70f
7a0020b
 
 
e5be70f
7a0020b
e5be70f
 
c111c20
e5be70f
c111c20
e5be70f
 
 
 
 
 
 
c111c20
e5be70f
 
 
 
7a0020b
 
c111c20
e5be70f
 
 
 
 
7a0020b
 
 
 
 
 
c111c20
7a0020b
 
 
c111c20
7a0020b
 
 
e5be70f
 
7a0020b
 
e5be70f
7a0020b
 
 
 
 
 
e5be70f
7a0020b
 
 
 
e5be70f
c111c20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import re
import json
from pathlib import Path
from typing import List, Dict, Optional, Any
from dataclasses import dataclass, field

@dataclass
class TaskmasterDialogue:
    conversation_id: str
    instruction_id: Optional[str]
    scenario: Optional[str]
    domain: Optional[str]
    turns: List[Dict[str, Any]]
    original_metadata: Dict[str, Any] = field(default_factory=dict)
    
    def __str__(self):
        return f"TaskmasterDialogue(conversation_id={self.conversation_id}, turns={len(self.turns)} turns)"
    
    def validate(self) -> bool:
        return bool(self.conversation_id and isinstance(self.turns, list))
    
class RawDataProcessingConfig:
    """
    Simple config for raw dataset processing
    """
    def __init__(
        self, 
        debug: bool = True,
        max_length: int = 512,
        min_turns: int = 2, 
        min_user_words: int = 3
    ):
        self.debug = debug
        self.max_length = max_length
        self.min_turns = min_turns
        self.min_user_words = min_user_words

class TaskmasterProcessor:
    """
    Load Taskmaster-1 dialogues, extracts domain.
    Clean, filter, save to pipeline format.
    """
    def __init__(self, config: RawDataProcessingConfig):
        self.config = config
    
    def load_taskmaster_dataset(
        self, 
        base_dir: str, 
        max_examples: Optional[int] = None
    ) -> List[TaskmasterDialogue]:
        """
        Load & parse Taskmaster-1 JSON for self-dialogs & woz-dialogs.
        """
        required_files = {
            "self-dialogs": "self-dialogs.json",
            "woz-dialogs": "woz-dialogs.json",
            "ontology": "ontology.json",
        }
        
        # Check for missing files
        missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
        if missing:
            raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
        
        # Load ontology
        ontology_path = Path(base_dir, required_files["ontology"])
        with open(ontology_path, 'r', encoding='utf-8') as f:
            ontology = json.load(f)
            if self.config.debug:
                print(f"[TaskmasterProcessor] Loaded ontology with {len(ontology.keys())} top-level keys (unused).")
        
        dialogues: List[TaskmasterDialogue] = []
        
        # Process each file
        file_keys = ["self-dialogs", "woz-dialogs"]
        for file_key in file_keys:
            file_path = Path(base_dir, required_files[file_key])
            with open(file_path, 'r', encoding='utf-8') as f:
                raw_data = json.load(f)
            
            for d in raw_data:
                conversation_id = d.get("conversation_id", "")
                instruction_id = d.get("instruction_id", None)
                scenario_text = d.get("scenario", "")
                
                # Handle utterances
                utterances = d.get("utterances", [])
                turns = self._process_utterances(utterances)

                # Detect Domain
                domain = self._extract_domain(scenario_text, turns)

                # Build the object
                new_dlg = TaskmasterDialogue(
                    conversation_id=conversation_id,
                    instruction_id=instruction_id,
                    scenario=scenario_text,
                    domain=domain,
                    turns=turns,
                    original_metadata={}
                )
                dialogues.append(new_dlg)
                
                if max_examples and len(dialogues) >= max_examples:
                    break
        
        if self.config.debug:
            print(f"[TaskmasterProcessor] Loaded {len(dialogues)} total dialogues from Taskmaster-1.")
        return dialogues
    
    def _extract_domain(self, scenario: str, turns: List[Dict[str, str]]) -> str:
        """
        Combine scenario text + all turn texts to detect domain more robustly.
        """
        combined_text = scenario.lower()
        for turn in turns:
            txt = turn.get('text', '').lower()
            combined_text += " " + txt

        # Domain patterns
        domain_patterns = {
            'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat|hungry)\b',
            'movie': r'\b(movie|cinema|film|ticket|showtime|theater|flick|screening)\b',
            'ride_share': r'\b(ride|taxi|uber|lyft|car\s?service|pickup|dropoff|driver)\b',
            'coffee': r'\b(coffee|café|cafe|starbucks|espresso|latte|mocha|americano)\b',
            'pizza': r'\b(pizza|delivery|order\s?food|pepperoni|topping|pizzeria|slice)\b',
            'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
        }

        for domain, pattern in domain_patterns.items():
            if re.search(pattern, combined_text):
                # Optional: print if debug
                if self.config.debug:
                    print(f"Matched domain: {domain} in scenario/turns")
                return domain
        
        if self.config.debug:
            print("No domain match, returning 'other'")
        return 'other'
    
    def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
        """
        Convert "utterances" to a cleaned List -> (speaker, text).
        Skip lines that are numeric, too short, or empty.
        """
        cleaned_turns = []
        for utt in utterances:
            speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
            raw_text = utt.get('text', '').strip()
            
            # Text cleaning
            text = self._clean_text(raw_text)

            # Skip blank or numeric lines (e.g. "4 3 13")
            if not text or self._is_numeric_line(text):
                continue

            # Skip too short (no training benefit from 1-word user turns). E.g. "ok","yes", etc.
            if len(text.split()) < 3:
                continue

            # Add to cleaned turns
            cleaned_turns.append({
                'speaker': speaker,
                'text': text
            })
        return cleaned_turns
    
    def _clean_text(self, text: str) -> str:
        """
        Simple text normalization
        """
        # Strip multiple spaces, remove unnecessary punctuation
        text = re.sub(r'\s+', ' ', text)
        text = re.sub(r'([!?.,])\1+', r'\1', text)
        return text.strip()

    def _is_numeric_line(self, text: str) -> bool:
        """
        Return True if line is purely digits/punctuation/spaces, 
        e.g. "4 3 13" and similar found in Taskmaster-1 dataset.
        """
        pattern = r'^[\s]*[\d]+([\s\d.,]+)*[\s]*$'
        return bool(re.match(pattern, text))

    def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
        """
        Filter out dialogues that don't meet min length requirements. Convert to pipeline format.
            {
              "dialogue_id": "...",
              "domain": "...",
              "turns": [ {"speaker": "user", "text": "..."}, ... ]
            }
        """
        results = []
        for dlg in dialogues:
            if not dlg.validate():
                continue
            
            # Skip if too few turns
            if len(dlg.turns) < self.config.min_turns:
                continue
            
            # Skip if any user turn is too short
            keep = True
            for turn in dlg.turns:
                if turn['speaker'] == 'user':
                    words_count = len(turn['text'].split())
                    if words_count < self.config.min_user_words:
                        keep = False
                        break
            
            if not keep:
                continue
            
            pipeline_dlg = {
                'dialogue_id': dlg.conversation_id,
                'domain': dlg.domain,
                'turns': dlg.turns  # already cleaned
            }
            results.append(pipeline_dlg)
        
        if self.config.debug:
            print(f"[TaskmasterProcessor] Filtered down to {len(results)} dialogues after cleaning.")
        return results