File size: 8,192 Bytes
e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b c111c20 e5be70f c111c20 e5be70f c111c20 e5be70f c111c20 e5be70f 7a0020b c111c20 7a0020b c111c20 7a0020b e5be70f 7a0020b c111c20 7a0020b c111c20 7a0020b c111c20 7a0020b c111c20 7a0020b c111c20 7a0020b e5be70f c111c20 7a0020b c111c20 e5be70f 7a0020b c111c20 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b c111c20 7a0020b e5be70f 7a0020b e5be70f 7a0020b c111c20 7a0020b e5be70f c111c20 7a0020b e5be70f 7a0020b e5be70f c111c20 e5be70f 7a0020b e5be70f c111c20 e5be70f c111c20 e5be70f c111c20 e5be70f c111c20 e5be70f 7a0020b e5be70f 7a0020b e5be70f c111c20 e5be70f c111c20 e5be70f c111c20 e5be70f 7a0020b c111c20 e5be70f 7a0020b c111c20 7a0020b c111c20 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f c111c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import re
import json
from pathlib import Path
from typing import List, Dict, Optional, Any
from dataclasses import dataclass, field
@dataclass
class TaskmasterDialogue:
conversation_id: str
instruction_id: Optional[str]
scenario: Optional[str]
domain: Optional[str]
turns: List[Dict[str, Any]]
original_metadata: Dict[str, Any] = field(default_factory=dict)
def __str__(self):
return f"TaskmasterDialogue(conversation_id={self.conversation_id}, turns={len(self.turns)} turns)"
def validate(self) -> bool:
return bool(self.conversation_id and isinstance(self.turns, list))
class RawDataProcessingConfig:
"""
Simple config for raw dataset processing
"""
def __init__(
self,
debug: bool = True,
max_length: int = 512,
min_turns: int = 2,
min_user_words: int = 3
):
self.debug = debug
self.max_length = max_length
self.min_turns = min_turns
self.min_user_words = min_user_words
class TaskmasterProcessor:
"""
Load Taskmaster-1 dialogues, extracts domain.
Clean, filter, save to pipeline format.
"""
def __init__(self, config: RawDataProcessingConfig):
self.config = config
def load_taskmaster_dataset(
self,
base_dir: str,
max_examples: Optional[int] = None
) -> List[TaskmasterDialogue]:
"""
Load & parse Taskmaster-1 JSON for self-dialogs & woz-dialogs.
"""
required_files = {
"self-dialogs": "self-dialogs.json",
"woz-dialogs": "woz-dialogs.json",
"ontology": "ontology.json",
}
# Check for missing files
missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
if missing:
raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
# Load ontology
ontology_path = Path(base_dir, required_files["ontology"])
with open(ontology_path, 'r', encoding='utf-8') as f:
ontology = json.load(f)
if self.config.debug:
print(f"[TaskmasterProcessor] Loaded ontology with {len(ontology.keys())} top-level keys (unused).")
dialogues: List[TaskmasterDialogue] = []
# Process each file
file_keys = ["self-dialogs", "woz-dialogs"]
for file_key in file_keys:
file_path = Path(base_dir, required_files[file_key])
with open(file_path, 'r', encoding='utf-8') as f:
raw_data = json.load(f)
for d in raw_data:
conversation_id = d.get("conversation_id", "")
instruction_id = d.get("instruction_id", None)
scenario_text = d.get("scenario", "")
# Handle utterances
utterances = d.get("utterances", [])
turns = self._process_utterances(utterances)
# Detect Domain
domain = self._extract_domain(scenario_text, turns)
# Build the object
new_dlg = TaskmasterDialogue(
conversation_id=conversation_id,
instruction_id=instruction_id,
scenario=scenario_text,
domain=domain,
turns=turns,
original_metadata={}
)
dialogues.append(new_dlg)
if max_examples and len(dialogues) >= max_examples:
break
if self.config.debug:
print(f"[TaskmasterProcessor] Loaded {len(dialogues)} total dialogues from Taskmaster-1.")
return dialogues
def _extract_domain(self, scenario: str, turns: List[Dict[str, str]]) -> str:
"""
Combine scenario text + all turn texts to detect domain more robustly.
"""
combined_text = scenario.lower()
for turn in turns:
txt = turn.get('text', '').lower()
combined_text += " " + txt
# Domain patterns
domain_patterns = {
'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat|hungry)\b',
'movie': r'\b(movie|cinema|film|ticket|showtime|theater|flick|screening)\b',
'ride_share': r'\b(ride|taxi|uber|lyft|car\s?service|pickup|dropoff|driver)\b',
'coffee': r'\b(coffee|café|cafe|starbucks|espresso|latte|mocha|americano)\b',
'pizza': r'\b(pizza|delivery|order\s?food|pepperoni|topping|pizzeria|slice)\b',
'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
}
for domain, pattern in domain_patterns.items():
if re.search(pattern, combined_text):
# Optional: print if debug
if self.config.debug:
print(f"Matched domain: {domain} in scenario/turns")
return domain
if self.config.debug:
print("No domain match, returning 'other'")
return 'other'
def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
"""
Convert "utterances" to a cleaned List -> (speaker, text).
Skip lines that are numeric, too short, or empty.
"""
cleaned_turns = []
for utt in utterances:
speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
raw_text = utt.get('text', '').strip()
# Text cleaning
text = self._clean_text(raw_text)
# Skip blank or numeric lines (e.g. "4 3 13")
if not text or self._is_numeric_line(text):
continue
# Skip too short (no training benefit from 1-word user turns). E.g. "ok","yes", etc.
if len(text.split()) < 3:
continue
# Add to cleaned turns
cleaned_turns.append({
'speaker': speaker,
'text': text
})
return cleaned_turns
def _clean_text(self, text: str) -> str:
"""
Simple text normalization
"""
# Strip multiple spaces, remove unnecessary punctuation
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'([!?.,])\1+', r'\1', text)
return text.strip()
def _is_numeric_line(self, text: str) -> bool:
"""
Return True if line is purely digits/punctuation/spaces,
e.g. "4 3 13" and similar found in Taskmaster-1 dataset.
"""
pattern = r'^[\s]*[\d]+([\s\d.,]+)*[\s]*$'
return bool(re.match(pattern, text))
def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
"""
Filter out dialogues that don't meet min length requirements. Convert to pipeline format.
{
"dialogue_id": "...",
"domain": "...",
"turns": [ {"speaker": "user", "text": "..."}, ... ]
}
"""
results = []
for dlg in dialogues:
if not dlg.validate():
continue
# Skip if too few turns
if len(dlg.turns) < self.config.min_turns:
continue
# Skip if any user turn is too short
keep = True
for turn in dlg.turns:
if turn['speaker'] == 'user':
words_count = len(turn['text'].split())
if words_count < self.config.min_user_words:
keep = False
break
if not keep:
continue
pipeline_dlg = {
'dialogue_id': dlg.conversation_id,
'domain': dlg.domain,
'turns': dlg.turns # already cleaned
}
results.append(pipeline_dlg)
if self.config.debug:
print(f"[TaskmasterProcessor] Filtered down to {len(results)} dialogues after cleaning.")
return results
|