JoeArmani
reranker scoring
e5be70f
raw
history blame
8.74 kB
import os
import re
import json
from pathlib import Path
from typing import List, Dict, Optional, Any
from dataclasses import dataclass, field
@dataclass
class TaskmasterDialogue:
conversation_id: str
instruction_id: Optional[str]
scenario: Optional[str]
domain: Optional[str]
turns: List[Dict[str, Any]]
original_metadata: Dict[str, Any] = field(default_factory=dict)
def __str__(self):
return f"TaskmasterDialogue(conversation_id={self.conversation_id}, turns={len(self.turns)} turns)"
def validate(self) -> bool:
return bool(self.conversation_id and isinstance(self.turns, list))
class PipelineConfig:
"""
Example config structure. Adjust to your real config usage.
"""
def __init__(
self,
debug: bool = True,
min_turns: int = 2,
min_user_words: int = 3
):
self.debug = debug
self.min_turns = min_turns
self.min_user_words = min_user_words
class TaskmasterProcessor:
"""
Loads Taskmaster-1 dialogues, extracts domain from scenario,
cleans + filters them, and outputs a pipeline-friendly format.
"""
def __init__(self, config: PipelineConfig):
self.config = config
def load_taskmaster_dataset(
self,
base_dir: str,
max_examples: Optional[int] = None
) -> List[TaskmasterDialogue]:
"""
Load and parse Taskmaster JSON for self-dialogs & woz-dialogs (Taskmaster-1).
Combines scenario text + conversation utterances to detect domain more robustly.
"""
required_files = {
"self-dialogs": "self-dialogs.json",
"woz-dialogs": "woz-dialogs.json",
"ontology": "ontology.json", # we might not actively use it, but let's expect it
}
# 1) Check for missing
missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
if missing:
raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
# 2) Optionally load ontology
ontology_path = Path(base_dir, required_files["ontology"])
with open(ontology_path, 'r', encoding='utf-8') as f:
ontology = json.load(f)
if self.config.debug:
print(f"[TaskmasterProcessor] Loaded ontology with {len(ontology.keys())} top-level keys (unused).")
dialogues: List[TaskmasterDialogue] = []
file_keys = ["self-dialogs", "woz-dialogs"]
for file_key in file_keys:
file_path = Path(base_dir, required_files[file_key])
with open(file_path, 'r', encoding='utf-8') as f:
raw_data = json.load(f)
for d in raw_data:
conversation_id = d.get("conversation_id", "")
instruction_id = d.get("instruction_id", None)
scenario_text = d.get("scenario", "")
# 3) Convert raw utterances
utterances = d.get("utterances", [])
turns = self._process_utterances(utterances)
# 4) Domain detection
domain = self._extract_domain(scenario_text, turns)
# 5) Build the structured object
new_dlg = TaskmasterDialogue(
conversation_id=conversation_id,
instruction_id=instruction_id,
scenario=scenario_text,
domain=domain,
turns=turns,
original_metadata={}
)
dialogues.append(new_dlg)
if max_examples and len(dialogues) >= max_examples:
break
if self.config.debug:
print(f"[TaskmasterProcessor] Loaded {len(dialogues)} total dialogues from Taskmaster-1.")
return dialogues
def _extract_domain(self, scenario: str, turns: List[Dict[str, str]]) -> str:
"""
Combine scenario text + all turn texts to detect domain more robustly.
"""
combined_text = scenario.lower()
for turn in turns:
txt = turn.get('text', '').lower()
combined_text += " " + txt
# Expanded domain patterns
domain_patterns = {
'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat|hungry)\b',
'movie': r'\b(movie|cinema|film|ticket|showtime|theater|flick|screening)\b',
'ride_share': r'\b(ride|taxi|uber|lyft|car\s?service|pickup|dropoff|driver)\b',
'coffee': r'\b(coffee|café|cafe|starbucks|espresso|latte|mocha|americano)\b',
'pizza': r'\b(pizza|delivery|order\s?food|pepperoni|topping|pizzeria|slice)\b',
'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
}
for dom, pattern in domain_patterns.items():
if re.search(pattern, combined_text):
# Optional: print if debug
if self.config.debug:
print(f"Matched domain: {dom} in scenario/turns")
return dom
if self.config.debug:
print("No domain match, returning 'other'")
return 'other'
def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
"""
Convert raw utterances to a cleaned list of (speaker, text).
Skip or remove lines that are numeric, too short, or empty.
"""
cleaned_turns = []
for utt in utterances:
speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
raw_text = utt.get('text', '').strip()
# 1) Optional text cleaning
text = self._clean_text(raw_text)
# 2) Skip blank or numeric lines
if not text:
continue
if self._is_numeric_line(text):
continue
# 3) If it's extremely short, skip.
# (For example, "ok" or "yes" might be 1-2 words.)
if len(text.split()) < 2:
# Optionally keep "ok" or "yes" if you'd like, but let's skip them to keep quality up
continue
# 4) Append
cleaned_turns.append({
'speaker': speaker,
'text': text
})
return cleaned_turns
def _clean_text(self, text: str) -> str:
"""
Basic text normalization: remove repeated punctuation, handle weird spacing, etc.
Adjust to your needs.
"""
# Example: collapse multiple spaces
text = re.sub(r'\s+', ' ', text)
# Example: remove trailing punctuation or repeated punctuation
# e.g. "Sure!!!" => "Sure!"
text = re.sub(r'([!?.,])\1+', r'\1', text)
return text.strip()
def _is_numeric_line(self, text: str) -> bool:
"""
Return True if line is purely digits/punctuation/spaces,
e.g. "4 3 13", "12345", "3.14". Adjust as needed.
"""
pattern = r'^[\s]*[\d]+([\s\d.,]+)*[\s]*$'
return bool(re.match(pattern, text))
def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
"""
Filter out dialogues that don't meet min turns / min user words,
then convert them to final pipeline format:
{
"dialogue_id": "...",
"domain": "...",
"turns": [ {"speaker": "user", "text": "..."}, ... ]
}
"""
results = []
for dlg in dialogues:
if not dlg.validate():
continue
# If after cleaning, we have too few turns, skip
if len(dlg.turns) < self.config.min_turns:
continue
# Check user-turn min words
# E.g. user must have >= 3 words
keep = True
for turn in dlg.turns:
if turn['speaker'] == 'user':
words_count = len(turn['text'].split())
if words_count < self.config.min_user_words:
keep = False
break
if not keep:
continue
pipeline_dlg = {
'dialogue_id': dlg.conversation_id,
'domain': dlg.domain,
'turns': dlg.turns # already cleaned
}
results.append(pipeline_dlg)
if self.config.debug:
print(f"[TaskmasterProcessor] Filtered down to {len(results)} dialogues after cleaning.")
return results