Spaces:
Sleeping
Sleeping
# app.py | |
import streamlit as st | |
from models.fraud_detection_model import load_fraud_detection_model, predict_fraud | |
from utils.preprocessing import preprocess_data_for_streamlit | |
from utils import feature_engineering | |
import pandas as pd | |
import tensorflow | |
def load_parquet_file(parquet_file_path): | |
return pd.read_parquet(parquet_file_path) | |
model_path = 'models/fraud_detection_model.h5' | |
fraud_model = load_fraud_detection_model(model_path) | |
from datasets import load_dataset | |
dataset = load_dataset("iix/Parquet_FIles/Fraud_detection.parquet") | |
# Load data | |
#data_path = 'data/dataset.csv' | |
df, X_scaled = preprocess_data_for_streamlit(dataset) | |
# Streamlit App | |
st.title('Fraud Detection Web App') | |
# Sidebar with user input | |
selected_index = st.sidebar.selectbox('Select an index:', df.index) | |
selected_data = X_scaled[selected_index].reshape(1, -1) | |
# Display selected data | |
st.write('Selected Data:') | |
st.write(df.iloc[selected_index]) | |
# Predict fraud | |
if st.button('Predict Fraud'): | |
prediction = predict_fraud(fraud_model, selected_data) | |
result = "Fraud" if prediction[0][0] == 1 else "Non-Fraud" | |
st.write(f'Prediction: {result}') | |