Spaces:
Sleeping
Sleeping
File size: 7,390 Bytes
ed3a930 678f82f ed3a930 44882f0 6dd10e8 ed3a930 61caa6e ed3a930 61caa6e ed3a930 9f967c8 ed3a930 61caa6e 9f967c8 ed3a930 61caa6e ed3a930 61caa6e ed3a930 9f967c8 4e89ebf 4b6bb4b 4e89ebf ed3a930 ad81de3 ed3a930 ad81de3 ed3a930 61caa6e ed3a930 4e89ebf 4b6bb4b ad81de3 a6779f4 ad81de3 a6779f4 ad81de3 9f967c8 5c1f652 4e89ebf 5c1f652 4e89ebf 5c1f652 4e89ebf 5c1f652 ad81de3 5c1f652 a6779f4 ad81de3 a6779f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import streamlit as st
import os
import zipfile
import pandas as pd
from langchain.document_loaders import DataFrameLoader
#import tiktoken
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from transformers import AutoTokenizer, AutoModelForCausalLM
from bs4 import BeautifulSoup
import requests
import torch
# Function to load vector database
def load_vector_db(zip_file_path, extract_path):
with st.spinner("Loading vector store..."):
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = Chroma(
persist_directory=extract_path,
embedding_function=embedding_function
)
st.success("Vector store loaded")
return vectordb
# Function to augment prompt
def augment_prompt(query, vectordb):
results = vectordb.similarity_search(query, k=10)
source_knowledge = "\n".join([x.page_content for x in results])
augmented_prompt = f"""
You are an AI assistant. Use the context provided below to answer the question as comprehensively as possible.
If the answer is not contained within the context, respond politely that you cannot provide that information.
Context:
{source_knowledge}
Question: {query}
"""
return augmented_prompt
# Function to handle chat with OpenAI
def chat_with_openai(query, vectordb, openai_api_key):
chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key)
augmented_query = augment_prompt(query, vectordb)
prompt = HumanMessage(content=augmented_query)
messages = [
SystemMessage(content="You are a helpful assistant."),
prompt
]
res = chat(messages)
return res.content
# # Function to handle chat with the Google open-source LLM
# def chat_with_google_llm(query, vectordb, tokenizer, model):
# augmented_query = augment_prompt(query, vectordb)
# input_ids = tokenizer(augmented_query, return_tensors="pt") #.to("cuda")
# outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# return response
# Streamlit UI
st.title("Data Roles Company Finder Chatbot")
st.write("This app helps users find companies hiring for data roles, providing information such as job title, salary estimate, job description, company rating, and more.")
# Load vector database
zip_file_path = "chroma_db_compressed_.zip"
extract_path = "./chroma_db_extracted"
vectordb = load_vector_db(zip_file_path, extract_path)
# # Load Google model and tokenizer
# tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
# model = AutoModelForCausalLM.from_pretrained(
# "google/gemma-2b-it",
# torch_dtype=torch.bfloat16
# )#.to("cuda")
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
if prompt := st.chat_input("Enter your query"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
openai_api_key = st.secrets["OPENAI_API_KEY"]
response = chat_with_openai(prompt, vectordb, openai_api_key)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# User input
# if prompt := st.chat_input("Enter your query"):
# st.session_state.messages.append({"role": "user", "content": prompt})
# with st.chat_message("user"):
# st.markdown(prompt)
# with st.chat_message("assistant"):
# response = chat_with_google_llm(prompt, vectordb, tokenizer, model)
# st.markdown(response)
# st.session_state.messages.append({"role": "assistant", "content": response})
# # Query input
# query = st.text_input("Enter your query", "")
# if st.button("Send"):
# if query:
# # Add user query to chat history
# st.session_state.messages.append({"role": "user", "content": query})
# with st.chat_message("user"):
# st.markdown(query)
# # Chat with OpenAI
# openai_api_key = st.secrets["OPENAI_API_KEY"]
# response = chat_with_openai(query, vectordb, openai_api_key)
# # Add AI response to chat history
# st.session_state.messages.append({"role": "assistant", "content": response})
# with st.chat_message("assistant"):
# st.markdown(response)
# # Streamlit UI
# st.title("Document Processing and AI Chat with LangChain")
# # Load vector database
# zip_file_path = "chroma_db_compressed_.zip"
# extract_path = "./chroma_db_extracted"
# vectordb = load_vector_db(zip_file_path, extract_path)
# # Query input
# query = st.text_input("Enter your query", "List three companies where I can work as a business analyst with their location and salary")
# if st.button("Get Answer"):
# # Chat with OpenAI
# openai_api_key = st.secrets["OPENAI_API_KEY"]
# response = chat_with_openai(query, vectordb, openai_api_key)
# st.write("Response from AI:")
# st.write(response)
# # Streamlit UI
# st.title("Data Roles Company Finder Chatbot")
# st.write("This app helps users find companies hiring for data roles, providing information such as job title, salary estimate, job description, company rating, and more.")
# # Load vector database
# zip_file_path = "chroma_db_compressed_.zip"
# extract_path = "./chroma_db_extracted"
# vectordb = load_vector_db(zip_file_path, extract_path)
# # Initialize session state for chat history
# if "messages" not in st.session_state:
# st.session_state.messages = [
# SystemMessage(content="You are a helpful assistant.")
# ]
# # Display chat history
# for message in st.session_state.messages:
# if isinstance(message, HumanMessage):
# st.write(f"You: {message.content}")
# else:
# st.write(f"AI: {message.content}")
# # Query input
# query = st.text_input("Enter your query", "List three companies where I can work as a business analyst with their location and salary")
# if st.button("Send"):
# if query:
# # Add user query to chat history
# st.session_state.messages.append(HumanMessage(content=query))
# # Chat with OpenAI
# openai_api_key = st.secrets["OPENAI_API_KEY"]
# response = chat_with_openai(query, vectordb, openai_api_key)
# # Add AI response to chat history
# st.session_state.messages.append(SystemMessage(content=response))
# # Display chat history
# for message in st.session_state.messages:
# if isinstance(message, HumanMessage):
# st.write(f"You: {message.content}")
# else:
# st.write(f"AI: {message.content}") |