File size: 7,390 Bytes
ed3a930
 
678f82f
ed3a930
 
 
 
 
 
 
 
 
44882f0
 
6dd10e8
ed3a930
61caa6e
 
 
 
 
 
ed3a930
61caa6e
 
 
 
 
ed3a930
 
 
9f967c8
 
ed3a930
61caa6e
 
9f967c8
ed3a930
61caa6e
ed3a930
 
61caa6e
 
ed3a930
 
9f967c8
4e89ebf
 
 
 
 
 
 
 
 
 
 
4b6bb4b
 
4e89ebf
 
 
 
 
 
 
ed3a930
ad81de3
ed3a930
ad81de3
 
ed3a930
61caa6e
 
 
 
ed3a930
4e89ebf
 
 
 
 
 
4b6bb4b
ad81de3
 
a6779f4
ad81de3
 
 
a6779f4
 
ad81de3
9f967c8
5c1f652
 
 
 
 
 
 
4e89ebf
 
5c1f652
 
 
4e89ebf
 
 
 
 
 
 
 
 
 
5c1f652
4e89ebf
 
 
 
5c1f652
 
 
 
 
 
 
 
 
 
 
 
 
ad81de3
5c1f652
 
 
 
a6779f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad81de3
a6779f4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import streamlit as st
import os
import zipfile
import pandas as pd
from langchain.document_loaders import DataFrameLoader
#import tiktoken
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from transformers import AutoTokenizer, AutoModelForCausalLM
from bs4 import BeautifulSoup
import requests
import torch

# Function to load vector database
def load_vector_db(zip_file_path, extract_path):
    with st.spinner("Loading vector store..."):
        with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
            zip_ref.extractall(extract_path)
    
    embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
    vectordb = Chroma(
        persist_directory=extract_path,
        embedding_function=embedding_function
    )
    st.success("Vector store loaded")
    return vectordb

# Function to augment prompt
def augment_prompt(query, vectordb):
    results = vectordb.similarity_search(query, k=10)
    source_knowledge = "\n".join([x.page_content for x in results])
    augmented_prompt = f"""
    You are an AI assistant. Use the context provided below to answer the question as comprehensively as possible. 
    If the answer is not contained within the context, respond politely that you cannot provide that information.

    Context:
    {source_knowledge}

    Question: {query}
    """
    return augmented_prompt


# Function to handle chat with OpenAI
def chat_with_openai(query, vectordb, openai_api_key):
    chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key)
    augmented_query = augment_prompt(query, vectordb)
    prompt = HumanMessage(content=augmented_query)
    messages = [
        SystemMessage(content="You are a helpful assistant."),
        prompt
    ]
    res = chat(messages)
    return res.content


# # Function to handle chat with the Google open-source LLM
# def chat_with_google_llm(query, vectordb, tokenizer, model):
#     augmented_query = augment_prompt(query, vectordb)
#     input_ids = tokenizer(augmented_query, return_tensors="pt") #.to("cuda")
#     outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
#     response = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     return response


# Streamlit UI
st.title("Data Roles Company Finder Chatbot")
st.write("This app helps users find companies hiring for data roles, providing information such as job title, salary estimate, job description, company rating, and more.")

# Load vector database
zip_file_path = "chroma_db_compressed_.zip"
extract_path = "./chroma_db_extracted"
vectordb = load_vector_db(zip_file_path, extract_path)

# # Load Google model and tokenizer
# tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
# model = AutoModelForCausalLM.from_pretrained(
#     "google/gemma-2b-it",
#     torch_dtype=torch.bfloat16
# )#.to("cuda")

# Initialize session state for chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat history
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


# User input
if prompt := st.chat_input("Enter your query"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant"):
        openai_api_key = st.secrets["OPENAI_API_KEY"]
        response = chat_with_openai(prompt, vectordb, openai_api_key)
        st.markdown(response)
        
    st.session_state.messages.append({"role": "assistant", "content": response})

# User input
# if prompt := st.chat_input("Enter your query"):
#     st.session_state.messages.append({"role": "user", "content": prompt})
#     with st.chat_message("user"):
#         st.markdown(prompt)

#     with st.chat_message("assistant"):
#         response = chat_with_google_llm(prompt, vectordb, tokenizer, model)
#         st.markdown(response)
        
#     st.session_state.messages.append({"role": "assistant", "content": response})


    
# # Query input
# query = st.text_input("Enter your query", "")

# if st.button("Send"):
#     if query:
#         # Add user query to chat history
#         st.session_state.messages.append({"role": "user", "content": query})
#         with st.chat_message("user"):
#             st.markdown(query)
        
#         # Chat with OpenAI
#         openai_api_key = st.secrets["OPENAI_API_KEY"]
#         response = chat_with_openai(query, vectordb, openai_api_key)
        
#         # Add AI response to chat history
#         st.session_state.messages.append({"role": "assistant", "content": response})
#         with st.chat_message("assistant"):
#             st.markdown(response)


            
# # Streamlit UI
# st.title("Document Processing and AI Chat with LangChain")

# # Load vector database
# zip_file_path = "chroma_db_compressed_.zip"
# extract_path = "./chroma_db_extracted"
# vectordb = load_vector_db(zip_file_path, extract_path)

# # Query input
# query = st.text_input("Enter your query", "List three companies where I can work as a business analyst with their location and salary")

# if st.button("Get Answer"):
#     # Chat with OpenAI
#     openai_api_key = st.secrets["OPENAI_API_KEY"]
#     response = chat_with_openai(query, vectordb, openai_api_key)
#     st.write("Response from AI:")
#     st.write(response)


# # Streamlit UI
# st.title("Data Roles Company Finder Chatbot")
# st.write("This app helps users find companies hiring for data roles, providing information such as job title, salary estimate, job description, company rating, and more.")

# # Load vector database
# zip_file_path = "chroma_db_compressed_.zip"
# extract_path = "./chroma_db_extracted"
# vectordb = load_vector_db(zip_file_path, extract_path)

# # Initialize session state for chat history
# if "messages" not in st.session_state:
#     st.session_state.messages = [
#         SystemMessage(content="You are a helpful assistant.")
#     ]

# # Display chat history
# for message in st.session_state.messages:
#     if isinstance(message, HumanMessage):
#         st.write(f"You: {message.content}")
#     else:
#         st.write(f"AI: {message.content}")

# # Query input
# query = st.text_input("Enter your query", "List three companies where I can work as a business analyst with their location and salary")

# if st.button("Send"):
#     if query:
#         # Add user query to chat history
#         st.session_state.messages.append(HumanMessage(content=query))
        
#         # Chat with OpenAI
#         openai_api_key = st.secrets["OPENAI_API_KEY"]
#         response = chat_with_openai(query, vectordb, openai_api_key)
        
#         # Add AI response to chat history
#         st.session_state.messages.append(SystemMessage(content=response))
        
#         # Display chat history
#         for message in st.session_state.messages:
#             if isinstance(message, HumanMessage):
#                 st.write(f"You: {message.content}")
#             else:
#                 st.write(f"AI: {message.content}")