File size: 4,731 Bytes
28f39ff
 
cd25265
a71f5d3
6d38fd5
 
 
22c0913
 
b7b1936
6d38fd5
 
b7b1936
6d38fd5
 
 
 
460d058
6d38fd5
 
460d058
6d38fd5
 
460d058
a88c73f
6d38fd5
a71f5d3
6d38fd5
 
 
 
 
 
 
 
 
177badc
74ccd9d
6d38fd5
 
 
 
 
460d058
6d38fd5
460d058
6d38fd5
 
 
 
 
 
 
 
 
6554c65
6d38fd5
460d058
a71f5d3
9738dce
6d38fd5
 
9738dce
 
6d38fd5
9738dce
 
a71f5d3
 
 
 
 
 
 
d4bbfb5
 
 
 
 
735e830
6d38fd5
735e830
86e6a95
9f58901
6d38fd5
 
 
 
 
 
 
b872418
6d38fd5
b872418
 
6d38fd5
b872418
ef9ea85
6d38fd5
b872418
 
 
6d38fd5
b872418
a20297c
6d38fd5
a20297c
 
 
 
6d38fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b872418
d4bbfb5
a71f5d3
 
 
 
 
 
6d38fd5
a71f5d3
6d38fd5
a71f5d3
 
 
 
 
6d38fd5
a71f5d3
 
6d38fd5
 
22b7bf5
6d38fd5
 
9738dce
a71f5d3
 
 
 
6d38fd5
a71f5d3
 
6d38fd5
a71f5d3
 
ef9ea85
6d38fd5
a71f5d3
6d38fd5
a71f5d3
 
 
 
6d38fd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
!pip install rembg

import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from rembg import remove
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    model,
    prompt,
    negative_prompt,
    seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):

    global model_repo_id
    if model != model_repo_id:
        print(model, model_repo_id)
        pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
        pipe = pipe.to(device)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Young man in anime style. The image is of high sharpness and resolution. A handsome, thoughtful man. The man is depicted in the foreground, close-up or middle plan. The background is blurry, not sharp. The play of light and shadow is visible on the face and clothes."
]

examples_negative = [
    "blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image"
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

available_models = [
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    "CompVis/stable-diffusion-v1-4",
]

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")

        model = gr.Dropdown(
            label="Model Selection",
            choices=available_models,
            value="stable-diffusion-v1-5/stable-diffusion-v1-5",
            interactive=True
        )
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )

        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=True,
        )
        
        seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
        )
        guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,  # Replace with defaults that work for your model
        )
        num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=30,  # Replace with defaults that work for your model
        )

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
        gr.Examples(examples=examples_negative, inputs=[negative_prompt])
        
        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
        
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model,
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()