File size: 3,256 Bytes
4b14b3d 29e42d5 b9ea623 29e42d5 37631cc f22469a 29e42d5 f22469a 29e42d5 e35a81f f0a6b70 e35a81f 29e42d5 e35a81f 29e42d5 856b5e7 f22469a e35a81f 37631cc f22469a e35a81f 822643b 29e42d5 59b54a5 e35a81f a6bf6c2 85134a0 acb46a7 29e42d5 f0a6b70 f22469a e35a81f e9ee97c 019caa7 29e42d5 59b54a5 f22469a 59b54a5 f22469a e35a81f f22469a 822643b 29e42d5 f22469a e35a81f 29e42d5 f22469a e35a81f 29e42d5 e35a81f 29e42d5 f22469a 822643b 29e42d5 f22469a 822643b 8b6a9db 822643b 8b6a9db 822643b 8b6a9db 59b54a5 822643b e35a81f 822643b e35a81f 59b54a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# import part
import streamlit as st
from transformers import pipeline
import textwrap
import numpy as np
import soundfile as sf
import tempfile
import os
from PIL import Image
import string
# Initialize pipelines with caching
@st.cache_resource
def load_pipelines():
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
storyer = pipeline("text-generation", model="aspis/gpt2-genre-story-generation")
tts = pipeline("text-to-speech", model="facebook/mms-tts-eng")
return captioner, storyer, tts
captioner, storyer, tts = load_pipelines()
# Function part
# Function to generate content from an image
def generate_content(image):
pil_image = Image.open(image)
# Generate caption
caption = captioner(pil_image)[0]["generated_text"]
st.write("**๐ What's in the picture: ๐**")
st.write(caption)
# Create prompt for story
prompt = (
f"Write a funny, interesting children's story that precisely centered on this scene {caption}\nStory:"
f"in third-person narrative, that describes this scene exactly: {caption} "
f"mention the exact place, location or venue within {caption}"
)
# Generate raw story
raw = storyer(
prompt,
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
no_repeat_ngram_size=2,
return_full_text=False
)[0]["generated_text"].strip()
# Define allowed characters to keep (removes symbols like * and ~)
allowed_chars = string.ascii_letters + string.digits + " .,!?\"'-"
# Clean the raw story by keeping only allowed characters
clean_raw = ''.join(c for c in raw if c in allowed_chars)
# Split into words and trim to 100 words
words = clean_raw.split()
story = " ".join(words[:100])
st.write("**๐ Your funny story: ๐**")
st.write(story)
# Generate audio from cleaned story
chunks = textwrap.wrap(story, width=200)
audio = np.concatenate([tts(chunk)["audio"].squeeze() for chunk in chunks])
# Save audio to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
sf.write(temp_file.name, audio, tts.model.config.sampling_rate)
temp_file_path = temp_file.name
return caption, story, temp_file_path
# Streamlit UI
st.title("โจ Magic Story Maker โจ")
st.markdown("Upload a picture to make a funny story and hear it too! ๐ธ")
uploaded_image = st.file_uploader("Choose your picture", type=["jpg", "jpeg", "png"])
# Streamlit UI (modified image display section)
if uploaded_image is None:
st.image("https://example.com/placeholder_image.jpg", caption="Upload your picture here! ๐ท", use_container_width=True)
else:
st.image(uploaded_image, caption="Your Picture ๐", use_container_width=True)
if st.button("โจ Make My Story! โจ"):
if uploaded_image is not None:
with st.spinner("๐ฎ Creating your magical story..."):
caption, story, audio_path = generate_content(uploaded_image)
st.success("๐ Your story is ready! ๐")
st.audio(audio_path, format="audio/wav")
os.remove(audio_path)
else:
st.warning("Please upload a picture first! ๐ธ") |