File size: 44,742 Bytes
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0abec
1799ce2
74e6395
 
 
 
 
 
 
 
 
 
c5bd926
92337d3
 
 
 
 
c5bd926
92337d3
 
 
 
 
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
af7ebad
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec13f98
 
 
 
 
74e6395
 
 
 
 
 
 
 
 
b15fe7a
bacea87
7942e96
d054101
b15fe7a
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bacea87
74e6395
 
 
 
 
 
 
 
 
 
ec13f98
 
 
 
 
 
74e6395
 
ec13f98
74e6395
 
bacea87
 
 
 
 
 
 
 
 
 
 
 
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0abec
74e6395
 
 
 
ec13f98
 
74e6395
 
 
ec13f98
 
 
 
 
 
74e6395
ec13f98
 
 
 
 
 
 
 
74e6395
 
 
 
 
 
ec13f98
4ebb124
 
74e6395
 
 
ec13f98
74e6395
4ebb124
74e6395
 
ec13f98
74e6395
 
 
ec13f98
 
74e6395
 
 
4ebb124
ec13f98
 
 
 
2a0abec
ec13f98
74e6395
 
ec13f98
 
74e6395
ec13f98
 
74e6395
 
ec13f98
 
2a0abec
 
 
 
74e6395
 
 
 
 
 
 
 
2a0abec
ec13f98
 
 
2a0abec
ec13f98
 
 
 
2a0abec
74e6395
 
2a0abec
ec13f98
 
2a0abec
ec13f98
74e6395
 
 
 
 
 
 
 
 
 
 
ec13f98
2a0abec
74e6395
 
 
 
 
 
 
 
 
 
ec13f98
 
74e6395
 
ec13f98
2a0abec
6344420
 
 
 
 
 
 
 
 
 
 
 
 
 
74e6395
2a0abec
51be391
ceb1ead
51be391
 
 
50b2026
51be391
 
74e6395
 
 
 
ec13f98
74e6395
2a0abec
 
 
 
 
 
74e6395
 
2a0abec
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
7a81a82
 
 
70843b0
7a81a82
 
 
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa45e61
86630a0
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e43c08
70843b0
8e43c08
 
70843b0
8e43c08
70843b0
8e43c08
 
70843b0
8e43c08
 
 
 
 
 
 
 
 
 
70843b0
8e43c08
 
 
7a81a82
6344420
4cb75c5
 
 
4ebb124
6344420
 
 
4ebb124
6344420
 
74e6395
6344420
 
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0abec
74e6395
2a0abec
74e6395
 
 
2a0abec
74e6395
 
 
 
 
 
 
2a0abec
 
 
74e6395
2a0abec
74e6395
 
2a0abec
74e6395
 
 
 
 
2a0abec
74e6395
 
 
 
 
 
 
 
2a0abec
 
 
74e6395
 
 
 
 
 
2a0abec
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cb75c5
 
 
 
 
 
 
 
74e6395
 
4cb75c5
 
 
 
 
 
74e6395
4cb75c5
74e6395
4cb75c5
 
 
 
 
 
 
74e6395
4cb75c5
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0abec
74e6395
 
ec13f98
2a0abec
ec13f98
2a0abec
51382b3
2a0abec
c9da937
 
 
6c841a5
74e6395
 
 
 
 
 
 
2a0abec
ec13f98
2a0abec
 
74e6395
ec13f98
 
74e6395
 
 
 
 
ec13f98
74e6395
 
 
da39403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b15fe7a
 
 
 
 
 
 
 
 
74e6395
7a81a82
74e6395
2a0abec
c9da937
2a0abec
6413dde
 
 
ece90eb
 
2a0abec
 
c9da937
74e6395
 
 
 
 
 
 
 
2a0abec
74e6395
 
92c92a4
da39403
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
da39403
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0abec
 
 
 
 
 
 
 
74e6395
 
 
 
 
2a0abec
74e6395
 
aaa5592
74e6395
 
 
 
 
 
7a81a82
51382b3
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc6f12
c142cdc
4cc6f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3022c9
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc6f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74e6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289dac5
 
 
74e6395
 
 
 
 
4cc6f12
74e6395
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
import os
from pathlib import Path
from typing import List, Union, Tuple
from PIL import Image
import ezdxf.units
import numpy as np
import torch
from torchvision import transforms
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
import cv2
import ezdxf
import gradio as gr
import gc
# from scalingtestupdated import calculate_scaling_factor
from scalingtestupdated import calculate_scaling_factor_with_units, calculate_paper_scaling_factor, convert_units, calculate_paper_scaling_factor_corrected
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
import json
import time
import signal
from shapely.ops import unary_union
from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
from u2netp import U2NETP
import logging
import shutil
import sys

# Add this at the very beginning of your main Python file, before any other imports
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '0'
os.environ['OPENCV_IO_ENABLE_JASPER'] = '0'
os.environ['QT_QPA_PLATFORM'] = 'offscreen'
os.environ['MPLBACKEND'] = 'Agg'

# For headless environments
import matplotlib
matplotlib.use('Agg')

# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Create cache directory for models
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)

# Paper size configurations (in mm)
PAPER_SIZES = {
    "A4": {"width": 210, "height": 297},
    "A3": {"width": 297, "height": 420},
    "US Letter": {"width": 215.9, "height": 279.4}
}
    
# Custom Exception Classes
class TimeoutReachedError(Exception):
    pass

class BoundaryOverlapError(Exception):
    pass

class TextOverlapError(Exception):
    pass

class PaperNotDetectedError(Exception):
    """Raised when the paper cannot be detected in the image"""
    pass

class MultipleObjectsError(Exception):
    """Raised when multiple objects are detected on the paper"""
    def __init__(self, message="Multiple objects detected. Please place only a single object on the paper."):
        super().__init__(message)

class NoObjectDetectedError(Exception):
    """Raised when no object is detected on the paper"""
    def __init__(self, message="No object detected on the paper. Please ensure an object is placed on the paper."):
        super().__init__(message)

class FingerCutOverlapError(Exception):
    """Raised when finger cuts overlap with existing geometry"""
    def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
        super().__init__(message)

class ReferenceBoxNotDetectedError(Exception):
    """Raised when reference box/paper cannot be detected"""
    def __init__(self, message="Reference box not detected"):
        super().__init__(message)

# Global model variables for lazy loading
paper_detector_global = None
u2net_global = None
birefnet = None

# Model paths
paper_model_path = os.path.join(CACHE_DIR, "paper_detector.pt")  # You'll need to train/provide this
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")

# Global variable for YOLOWorld
yolo_v8_global = None
yolo_v8_model_path = os.path.join(CACHE_DIR, "yolov8n.pt")  # Adjust path as needed

    
# Device configuration
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])

def ensure_model_files():
    """Ensure model files are available in cache directory"""
    if not os.path.exists(paper_model_path):
        if os.path.exists("paper_detector.pt"):
            shutil.copy("paper_detector.pt", paper_model_path)
        else:
            logger.warning("paper_detector.pt model file not found - using fallback detection")
    
    if not os.path.exists(u2net_model_path):
        if os.path.exists("u2netp.pth"):
            shutil.copy("u2netp.pth", u2net_model_path)
        else:
            raise FileNotFoundError("u2netp.pth model file not found")
    logger.info("YOLOv8 will auto-download if not present")

ensure_model_files()

# Lazy loading functions
def get_paper_detector():
    """Lazy load paper detector model"""
    global paper_detector_global
    if paper_detector_global is None:
        logger.info("Loading paper detector model...")
        if os.path.exists(paper_model_path):
            try:
                paper_detector_global = YOLO(paper_model_path)
                logger.info("Paper detector loaded successfully")
            except Exception as e:
                logger.error(f"Failed to load paper detector: {e}")
                paper_detector_global = None
        else:
            # Fallback to generic object detection for paper-like rectangles
            logger.warning("Paper model file not found, using fallback detection")
            paper_detector_global = None
    return paper_detector_global
def get_yolo_v8():
    """Lazy load YOLOv8 model"""
    global yolo_v8_global
    if yolo_v8_global is None:
        logger.info("Loading YOLOv8 model...")
        try:
            yolo_v8_global = YOLO(yolo_v8_model_path)  # Auto-downloads if needed
            logger.info("YOLOv8 model loaded successfully")
        except Exception as e:
            logger.error(f"Failed to load YOLOv8: {e}")
            yolo_v8_global = None
    return yolo_v8_global
def get_u2net():
    """Lazy load U2NETP model"""
    global u2net_global
    if u2net_global is None:
        logger.info("Loading U2NETP model...")
        u2net_global = U2NETP(3, 1)
        u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
        u2net_global.to(device)
        u2net_global.eval()
        logger.info("U2NETP model loaded successfully")
    return u2net_global

def load_birefnet_model():
    """Load BiRefNet model from HuggingFace"""
    return AutoModelForImageSegmentation.from_pretrained(
        'ZhengPeng7/BiRefNet', 
        trust_remote_code=True
    )

def get_birefnet():
    """Lazy load BiRefNet model"""
    global birefnet
    if birefnet is None:
        logger.info("Loading BiRefNet model...")
        birefnet = load_birefnet_model()
        birefnet.to(device)
        birefnet.eval()
        logger.info("BiRefNet model loaded successfully")
    return birefnet

def detect_paper_contour(image: np.ndarray, output_unit: str = "mm") -> Tuple[np.ndarray, float]:
    """
    Detect paper in the image using contour detection as fallback
    Returns the paper contour and estimated scaling factor
    """
    logger.info("Using contour-based paper detection")
    
    # Convert to grayscale
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
    
    # Apply bilateral filter to reduce noise while preserving edges
    filtered = cv2.bilateralFilter(gray, 9, 75, 75)
    
    # Apply adaptive threshold
    thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                   cv2.THRESH_BINARY, 11, 2)
    
    # Edge detection with multiple thresholds
    edges1 = cv2.Canny(filtered, 50, 150)
    edges2 = cv2.Canny(filtered, 30, 100)
    edges = cv2.bitwise_or(edges1, edges2)
    
    # Morphological operations to connect broken edges
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
    
    # Find contours
    contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    # Filter contours by area and aspect ratio to find paper-like rectangles
    paper_contours = []
    image_area = image.shape[0] * image.shape[1]
    min_area = image_area * 0.20  # At least 15% of image
    max_area = image_area * 0.85  # At most 95% of image
    
    for contour in contours:
        area = cv2.contourArea(contour)
        if min_area < area < max_area:
            # Approximate contour to polygon
            epsilon = 0.015 * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            
            # Check if it's roughly rectangular (4 corners) or close to it
            if len(approx) >= 4:
                # Calculate bounding rectangle
                rect = cv2.boundingRect(approx)
                w, h = rect[2], rect[3]
                aspect_ratio = w / h if h > 0 else 0
                
                # Check if aspect ratio matches common paper ratios
                # A4: 1.414, A3: 1.414, US Letter: 1.294
                if 1.3 < aspect_ratio < 1.5:  # More lenient tolerance
                    # Check if contour area is close to bounding rect area (rectangularity)
                    rect_area = w * h
                    if rect_area > 0:
                        extent = area / rect_area
                        if extent > 0.85:  # At least 85% rectangular
                            paper_contours.append((contour, area, aspect_ratio, extent))
    
    if not paper_contours:
        logger.error("No paper-like contours found")
        raise ReferenceBoxNotDetectedError("Could not detect paper in the image using contour detection")
    
    # Select the best paper contour based on area and rectangularity
    paper_contours.sort(key=lambda x: (x[1] * x[3]), reverse=True)  # Sort by area * extent
    best_contour = paper_contours[0][0]
    
    logger.info(f"Paper detected using contours: area={paper_contours[0][1]}, aspect_ratio={paper_contours[0][2]:.2f}")
    
    # Return 0.0 as placeholder - will be calculated later based on paper size
    return best_contour, 0.0
    
def detect_paper_bounds(image: np.ndarray, paper_size: str, output_unit: str = "mm") -> Tuple[np.ndarray, float]:
    """
    Detect paper bounds in the image and calculate scaling factor
    """
    try:
        paper_detector = get_paper_detector()
        
        if paper_detector is not None:
            # Use trained model if available
            results = paper_detector.predict(image, conf=0.8, verbose=False)
            
            if not results or len(results) == 0:
                logger.warning("No results from paper detector")
                return detect_paper_contour(image, output_unit)
                
            # Check if boxes exist and are not empty
            if not hasattr(results[0], 'boxes') or results[0].boxes is None or len(results[0].boxes) == 0:
                logger.warning("No boxes detected by model, using fallback contour detection")
                return detect_paper_contour(image, output_unit)
            
            # Get the largest detected paper
            boxes = results[0].boxes.xyxy.cpu().numpy()
            if len(boxes) == 0:
                logger.warning("Empty boxes detected, using fallback")
                return detect_paper_contour(image, output_unit)
                
            largest_box = None
            max_area = 0
            
            for box in boxes:
                x_min, y_min, x_max, y_max = box
                area = (x_max - x_min) * (y_max - y_min)
                if area > max_area:
                    max_area = area
                    largest_box = box
            
            if largest_box is None:
                logger.warning("No valid paper box found, using fallback")
                return detect_paper_contour(image, output_unit)
                
            # Convert box to contour-like format
            x_min, y_min, x_max, y_max = map(int, largest_box)
            paper_contour = np.array([
                [[x_min, y_min]],
                [[x_max, y_min]],
                [[x_max, y_max]],
                [[x_min, y_max]]
            ])
            
            logger.info(f"Paper detected by model: {x_min},{y_min} to {x_max},{y_max}")
            
        else:
            # Use fallback contour detection
            logger.info("Using fallback contour detection for paper")
            paper_contour, _ = detect_paper_contour(image, output_unit)

        # After getting paper_contour, expand it
        rect = cv2.boundingRect(paper_contour)
        expansion = int(min(rect[2], rect[3]) * 0.1)  # Expand by 10%
        
        x, y, w, h = rect
        expanded_contour = np.array([
            [[max(0, x - expansion), max(0, y - expansion)]],
            [[min(image.shape[1], x + w + expansion), max(0, y - expansion)]],
            [[min(image.shape[1], x + w + expansion), min(image.shape[0], y + h + expansion)]],
            [[max(0, x - expansion), min(image.shape[0], y + h + expansion)]]
        ])
        
        paper_contour = expanded_contour
        
        # Calculate scaling factor based on paper size with proper units
        # scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size, output_unit)
        scaling_factor, unit_string = calculate_paper_scaling_factor_corrected(
            paper_contour, 
            paper_size, 
            output_unit="mm",
            correction_factor=1.235,  # Adjust this value
            method="average"  # Try different methods
)        
        return paper_contour, scaling_factor
        
    except Exception as e:
        logger.error(f"Error in paper detection: {e}")
        raise ReferenceBoxNotDetectedError(f"Failed to detect paper: {str(e)}")

def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str, output_unit: str = "mm") -> float:
    """
    Calculate scaling factor based on detected paper dimensions with proper unit handling.
    """
    from scalingtestupdated import calculate_paper_scaling_factor as calc_paper_scale
    scaling_factor, unit_string = calc_paper_scale(paper_contour, paper_size, output_unit)
    return scaling_factor


def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None:
    """
    Validate that only a single object is present on the paper
    """
    # Create a mask for the paper area
    paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
    cv2.fillPoly(paper_mask, [paper_contour], 255)
    
    # Apply paper mask to object mask
    masked_objects = cv2.bitwise_and(mask, paper_mask)
    
    # Find contours of objects within paper bounds
    contours, _ = cv2.findContours(masked_objects, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
   
    # Filter out very small contours (noise) and paper-sized contours
    image_area = mask.shape[0] * mask.shape[1]
    min_area = 100  # Minimum area threshold
    max_area = image_area * 0.5  # Maximum 50% of image area (to exclude paper detection)
    significant_contours = [c for c in contours if min_area < cv2.contourArea(c) < max_area]
        
    if len(significant_contours) == 0:
        raise NoObjectDetectedError()
    elif len(significant_contours) > 1:
        raise MultipleObjectsError()
    
    logger.info(f"Single object validated: {len(significant_contours)} significant contour(s) found")

def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
    """Remove background using U2NETP model"""
    try:
        u2net_model = get_u2net()
        
        image_pil = Image.fromarray(image)
        transform_u2netp = transforms.Compose([
            transforms.Resize((320, 320)),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])
        
        input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
        
        with torch.no_grad():
            outputs = u2net_model(input_tensor)
        
        pred = outputs[0]
        pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
        pred_np = pred.squeeze().cpu().numpy()
        pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
        pred_np = (pred_np * 255).astype(np.uint8)
        
        return pred_np
    except Exception as e:
        logger.error(f"Error in U2NETP background removal: {e}")
        raise


def remove_bg(image: np.ndarray) -> np.ndarray:
    """Remove background using BiRefNet model for main objects"""
    try:
        birefnet_model = get_birefnet()
        
        transform_image = transforms.Compose([
            transforms.Resize((1024, 1024)),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])
        
        image_pil = Image.fromarray(image)
        input_images = transform_image(image_pil).unsqueeze(0).to(device)

        with torch.no_grad():
            preds = birefnet_model(input_images)[-1].sigmoid().cpu()
        pred = preds[0].squeeze()

        pred_pil = transforms.ToPILImage()(pred)
        
        scale_ratio = 1024 / max(image_pil.size)
        scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
        
        return np.array(pred_pil.resize(scaled_size))
    except Exception as e:
        logger.error(f"Error in BiRefNet background removal: {e}")
        raise

def mask_paper_area_in_image(image: np.ndarray, paper_contour: np.ndarray) -> np.ndarray:
    """Less aggressive masking to preserve corner objects"""
    masked_image = image.copy()
    
    # Much less aggressive shrinking - only 2% instead of 8%
    rect = cv2.boundingRect(paper_contour)
    shrink_pixels = max(5, int(min(rect[2], rect[3]) * 0.02))  # Changed from 0.08 to 0.02
    
    x, y, w, h = rect
    # Create mask but keep more area
    outer_mask = np.ones(image.shape[:2], dtype=np.uint8) * 255
    
    inner_contour = np.array([
        [[x + shrink_pixels, y + shrink_pixels]],
        [[x + w - shrink_pixels, y + shrink_pixels]],
        [[x + w - shrink_pixels, y + h - shrink_pixels]],
        [[x + shrink_pixels, y + h - shrink_pixels]]
    ])
    
    cv2.fillPoly(outer_mask, [inner_contour], 0)
    masked_image[outer_mask == 255] = [128, 128, 128]  # Gray instead of black
    
    return masked_image
    
def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.2) -> np.ndarray:
    """Less aggressive paper area exclusion"""
    # Create paper mask
    paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
    cv2.fillPoly(paper_mask, [paper_contour], 255)
    
    # Instead of eroding, slightly expand the paper mask
    rect = cv2.boundingRect(paper_contour)
    expansion = max(10, int(min(rect[2], rect[3]) * 0.02))  # 2% expansion
    
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (expansion, expansion))
    expanded_paper_mask = cv2.dilate(paper_mask, kernel, iterations=1)
    
    # Keep objects within expanded paper area
    result_mask = cv2.bitwise_and(mask, expanded_paper_mask)
    
    return result_mask

def resample_contour(contour, edge_radius_px: int = 0):
    """Resample contour with radius-aware smoothing and periodic handling."""
    logger.info(f"Starting resample_contour with contour of shape {contour.shape}")

    num_points = 1500
    sigma = max(2, int(edge_radius_px) // 4)

    if len(contour) < 4:
        error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
        logger.error(error_msg)
        raise ValueError(error_msg)

    try:
        contour = contour[:, 0, :]
        logger.debug(f"Reshaped contour to shape {contour.shape}")

        if not np.array_equal(contour[0], contour[-1]):
            contour = np.vstack([contour, contour[0]])

        tck, u = splprep(contour.T, u=None, s=0, per=True)
        
        u_new = np.linspace(u.min(), u.max(), num_points)
        x_new, y_new = splev(u_new, tck, der=0)
        
        if sigma > 0:
            x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
            y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
            
            x_new[-1] = x_new[0]
            y_new[-1] = y_new[0]

        result = np.array([x_new, y_new]).T
        logger.info(f"Completed resample_contour with result shape {result.shape}")
        return result

    except Exception as e:
        logger.error(f"Error in resample_contour: {e}")
        raise


def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
    """Save contours as DXF splines with optional finger cuts - scaling_factor should be in mm/px"""
    doc = ezdxf.new(units=ezdxf.units.MM)
    doc.header["$INSUNITS"] = ezdxf.units.MM
    msp = doc.modelspace()
    final_polygons_mm = []  # Use mm instead of inch for clarity
    finger_centers = []
    original_polygons = []

    for contour in inflated_contours:
        try:
            resampled_contour = resample_contour(contour)  

            # Convert pixel coordinates to mm using the scaling factor
            points_mm = [(x * scaling_factor, (height - y) * scaling_factor) 
                        for x, y in resampled_contour]

            if len(points_mm) < 3:
                continue

            tool_polygon = build_tool_polygon(points_mm)
            original_polygons.append(tool_polygon)

            if finger_clearance:
                try:
                    tool_polygon, center = place_finger_cut_adjusted(
                        tool_polygon, points_mm, finger_centers, final_polygons_mm
                    )
                except FingerCutOverlapError:
                    tool_polygon = original_polygons[-1]

            exterior_coords = polygon_to_exterior_coords(tool_polygon)
            if len(exterior_coords) < 3:
                continue

            # Coordinates are already in mm, so add directly to DXF
            msp.add_spline(exterior_coords, degree=3, dxfattribs={"layer": "TOOLS"})
            final_polygons_mm.append(tool_polygon)

        except ValueError as e:
            logger.warning(f"Skipping contour: {e}")

    dxf_filepath = os.path.join("./outputs", "out.dxf")
    doc.saveas(dxf_filepath)
    return dxf_filepath, final_polygons_mm, original_polygons

def build_tool_polygon(points_inch):
    """Build a polygon from inch-converted points"""
    return Polygon(points_inch)

def polygon_to_exterior_coords(poly):
    """Extract exterior coordinates from polygon"""
    logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")

    try:
        if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
            logger.debug(f"Performing unary_union on {poly.geom_type}")
            unified = unary_union(poly)
            if unified.is_empty:
                logger.warning("unary_union produced an empty geometry; returning empty list")
                return []
            
            if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
                largest = None
                max_area = 0.0
                for g in getattr(unified, "geoms", []):
                    if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
                        max_area = g.area
                        largest = g
                if largest is None:
                    logger.warning("No valid Polygon found in unified geometry; returning empty list")
                    return []
                poly = largest
            else:
                poly = unified

        if not hasattr(poly, "exterior") or poly.exterior is None:
            logger.warning("Input geometry has no exterior ring; returning empty list")
            return []

        raw_coords = list(poly.exterior.coords)
        total = len(raw_coords)
        logger.info(f"Extracted {total} raw exterior coordinates")

        if total == 0:
            return []

        # Subsample coordinates to at most 100 points
        max_pts = 100
        if total > max_pts:
            step = total // max_pts
            sampled = [raw_coords[i] for i in range(0, total, step)]
            if sampled[-1] != raw_coords[-1]:
                sampled.append(raw_coords[-1])
            logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
            return sampled
        else:
            return raw_coords

    except Exception as e:
        logger.error(f"Error in polygon_to_exterior_coords: {e}")
        return []

def place_finger_cut_adjusted(
    tool_polygon: Polygon,
    points_inch: list,
    existing_centers: list,
    all_polygons: list,
    circle_diameter: float = 25.4,
    min_gap: float = 0.5,
    max_attempts: int = 100
) -> Tuple[Polygon, tuple]:
    """Place finger cuts with collision avoidance"""
    logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")

    def fallback_solution():
        logger.warning("Using fallback approach for finger cut placement")
        fallback_center = points_inch[len(points_inch) // 2]
        r = circle_diameter / 2.0
        fallback_circle = Point(fallback_center).buffer(r, resolution=32)
        try:
            union_poly = tool_polygon.union(fallback_circle)
        except Exception as e:
            logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
            union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))

        existing_centers.append(fallback_center)
        logger.info(f"Fallback finger cut placed at {fallback_center}")
        return union_poly, fallback_center

    r = circle_diameter / 2.0
    needed_center_dist = circle_diameter + min_gap

    raw_perimeter = polygon_to_exterior_coords(tool_polygon)
    if not raw_perimeter:
        logger.warning("No valid exterior coords found; using fallback immediately")
        return fallback_solution()

    if len(raw_perimeter) > 100:
        step = len(raw_perimeter) // 100
        perimeter_coords = raw_perimeter[::step]
        logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
    else:
        perimeter_coords = raw_perimeter[:]

    indices = list(range(len(perimeter_coords)))
    np.random.shuffle(indices)
    logger.debug(f"Shuffled perimeter indices for candidate order")

    start_time = time.time()
    timeout_secs = 5.0

    attempts = 0
    try:
        while attempts < max_attempts:
            if time.time() - start_time > timeout_secs - 0.1:
                logger.warning(f"Approaching timeout after {attempts} attempts")
                return fallback_solution()

            for idx in indices:
                if time.time() - start_time > timeout_secs - 0.05:
                    logger.warning("Timeout during candidate-point loop")
                    return fallback_solution()

                cx, cy = perimeter_coords[idx]
                for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
                    candidate_center = (cx + dx, cy + dy)

                    # Check distance to existing finger centers
                    too_close_finger = any(
                        np.hypot(candidate_center[0] - ex, candidate_center[1] - ey) 
                        < needed_center_dist 
                        for (ex, ey) in existing_centers
                    )
                    if too_close_finger:
                        continue

                    # Build candidate circle
                    candidate_circle = Point(candidate_center).buffer(r, resolution=32)

                    # Must overlap ≥30% with this polygon
                    try:
                        inter_area = tool_polygon.intersection(candidate_circle).area
                    except Exception:
                        continue

                    if inter_area < 0.3 * candidate_circle.area:
                        continue

                    # Must not intersect other polygons
                    invalid = False
                    for other_poly in all_polygons:
                        if other_poly.equals(tool_polygon):
                            continue
                        if other_poly.buffer(min_gap).intersects(candidate_circle) or \
                           other_poly.buffer(min_gap).touches(candidate_circle):
                            invalid = True
                            break
                    if invalid:
                        continue

                    # Union and return
                    try:
                        union_poly = tool_polygon.union(candidate_circle)
                        if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
                            continue
                        if union_poly.equals(tool_polygon):
                            continue
                    except Exception:
                        continue

                    existing_centers.append(candidate_center)
                    logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
                    return union_poly, candidate_center

            attempts += 1
            if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
                logger.warning(f"Approaching timeout (attempt {attempts})")
                return fallback_solution()

        logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
        return fallback_solution()

    except Exception as e:
        logger.error(f"Error in place_finger_cut_adjusted: {e}")
        return fallback_solution()

# def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]:
#     """Extract outlines from binary image"""
#     contours, _ = cv2.findContours(
#         binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
#     )
#     outline_image = np.full_like(binary_image, 255)
#     return outline_image, contours

def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]:
    """Extract outlines from binary image"""
    # Check if contours are being cut at image boundaries
    h, w = binary_image.shape
    
    # Add small border to prevent boundary cutting
    bordered_image = cv2.copyMakeBorder(binary_image, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=0)
    
    contours, _ = cv2.findContours(
        bordered_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
    )
    
    # Adjust contour coordinates back to original image space
    adjusted_contours = []
    for contour in contours:
        adjusted_contour = contour - [5, 5]  # Subtract border offset
        adjusted_contours.append(adjusted_contour)
    
    outline_image = np.full_like(binary_image, 255)
    return outline_image, adjusted_contours

def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
    """Round mask edges using contour smoothing"""
    if radius_mm <= 0 or scaling_factor <= 0:
        return mask
    
    radius_px = max(1, int(radius_mm / scaling_factor))
    
    if np.count_nonzero(mask) < 500:
        return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
    
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    contours = [c for c in contours if cv2.contourArea(c) > 100]
    smoothed_contours = []
    
    for contour in contours:
        try:
            resampled = resample_contour(contour, radius_px)
            resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
            smoothed_contours.append(resampled)
        except Exception as e:
            logger.warning(f"Error smoothing contour: {e}")
            smoothed_contours.append(contour)
    
    rounded = np.zeros_like(mask)
    cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
    
    return rounded

def cleanup_memory():
    """Clean up memory after processing"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
    logger.info("Memory cleanup completed")

def cleanup_models():
    """Unload models to free memory"""
    global paper_detector_global, u2net_global, birefnet
    if paper_detector_global is not None:
        del paper_detector_global
        paper_detector_global = None
    if u2net_global is not None:
        del u2net_global
        u2net_global = None
    if birefnet is not None:
        del birefnet
        birefnet = None
    cleanup_memory()

def make_square(img: np.ndarray):
    """Make the image square by padding"""
    height, width = img.shape[:2]
    max_dim = max(height, width)
    
    pad_height = (max_dim - height) // 2
    pad_width = (max_dim - width) // 2
    
    pad_height_extra = max_dim - height - 2 * pad_height
    pad_width_extra = max_dim - width - 2 * pad_width
    
    if len(img.shape) == 3:
        padded = np.pad(
            img,
            (
                (pad_height, pad_height + pad_height_extra),
                (pad_width, pad_width + pad_width_extra),
                (0, 0),
            ),
            mode="edge",
        )
    else:
        padded = np.pad(
            img,
            (
                (pad_height, pad_height + pad_height_extra),
                (pad_width, pad_width + pad_width_extra),
            ),
            mode="edge",
        )
    
    return padded

def predict_with_paper(image, paper_size, offset, offset_unit, finger_clearance=False):
    """Main prediction function using paper as reference"""
    
    logger.info(f"Starting prediction with image shape: {image.shape}")
    logger.info(f"Paper size: {paper_size}, Offset: {offset} {offset_unit}")
    
    # Convert offset to mm for internal calculations (DXF generation expects mm)
    if offset_unit == "inches":
        offset_mm = convert_units(offset, "inches", "mm")
    else:
        offset_mm = offset
        
    edge_radius = None
    if edge_radius is None or edge_radius == 0:
        edge_radius = 0.0001

    if offset < 0:
        raise gr.Error("Offset Value Can't be negative")

    try:
        # Detect paper bounds and calculate scaling factor (always in mm for DXF)
        logger.info("Starting paper detection...")
        paper_contour, scaling_factor = detect_paper_bounds(image, paper_size, output_unit="mm")
        logger.info(f"Paper detected successfully with scaling factor: {scaling_factor:.6f} mm/px")
        
    except ReferenceBoxNotDetectedError as e:
        logger.error(f"Paper detection failed: {e}")
        return (
            None, None, None, None,
            f"Error: {str(e)}"
        )
    except Exception as e:
        logger.error(f"Unexpected error in paper detection: {e}")
        raise gr.Error(f"Error processing image: {str(e)}")

    try:
            # Get paper bounds with expansion
            rect = cv2.boundingRect(paper_contour)
            expansion = max(20, int(min(rect[2], rect[3]) * 0.05))  # 5% expansion
            
            x, y, w, h = rect
            x_min = max(0, x - expansion)
            y_min = max(0, y - expansion)
            x_max = min(image.shape[1], x + w + expansion)
            y_max = min(image.shape[0], y + h + expansion)
            
            # Process the expanded paper area
            cropped_image = image[y_min:y_max, x_min:x_max]
            crop_offset = (x_min, y_min)
            
            # Remove background
            objects_mask = remove_bg(cropped_image)
            
            # Resize mask back to cropped image size
            target_height = y_max - y_min
            target_width = x_max - x_min
            objects_mask_resized = cv2.resize(objects_mask, (target_width, target_height))
            
            # Place back in full image space
            full_mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
            full_mask[y_min:y_max, x_min:x_max] = objects_mask_resized
    
            # Light filtering only - don't exclude paper area aggressively
            # Just remove small noise
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
            objects_mask = cv2.morphologyEx(full_mask, cv2.MORPH_OPEN, kernel)
            
            # Debug: Save intermediate masks
            cv2.imwrite("./debug/objects_mask_after_processing.jpg", objects_mask)
            
            # Check if we actually have object pixels
            object_pixels = np.count_nonzero(objects_mask)
            if object_pixels < 300:  # Minimum threshold
                raise NoObjectDetectedError("No significant object detected")
            
            # Validate single object
            validate_single_object(objects_mask, paper_contour)
        
    except (MultipleObjectsError, NoObjectDetectedError) as e:
        return (
            None, None, None, None,
            f"Error: {str(e)}"
        )
    except Exception as e:
        raise gr.Error(f"Error in object detection: {str(e)}")

    # Apply edge rounding if specified
    rounded_mask = objects_mask.copy()
    
    # Apply dilation for offset - more precise calculation using mm values
    if offset_mm > 0:
        offset_pixels = max(1, int(round(float(offset_mm) / scaling_factor)))
        if offset_pixels > 0:
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (offset_pixels*2+1, offset_pixels*2+1))
            dilated_mask = cv2.dilate(rounded_mask, kernel, iterations=1)
        else:
            dilated_mask = rounded_mask.copy()
    else:
        dilated_mask = rounded_mask.copy()

    # Save original dilated mask for output
    Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
    dilated_mask_orig = dilated_mask.copy()

    # Extract contours
    outlines, contours = extract_outlines(dilated_mask)

    try:
        # Generate DXF - scaling_factor should be in mm/px for proper DXF units
        dxf, finger_polygons, original_polygons = save_dxf_spline(
            contours,
            scaling_factor,  # This should be mm/px
            image.shape[0],  # Use original image height
            finger_clearance=(finger_clearance == "On")
        )
    except FingerCutOverlapError as e:
        raise gr.Error(str(e))

    # Create annotated image
    shrunked_img_contours = image.copy()

    if finger_clearance == "On":
        outlines = np.full_like(dilated_mask, 255)
        for poly in finger_polygons:
            try:
                coords = np.array([
                    (int(x / scaling_factor), int(image.shape[0] - y / scaling_factor))
                    for x, y in poly.exterior.coords
                ], np.int32).reshape((-1, 1, 2))

                cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2)
                cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
            except Exception as e:
                logger.warning(f"Failed to draw finger cut: {e}")
                continue
    else:
        outlines = np.full_like(dilated_mask, 255)
        cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
        cv2.drawContours(outlines, contours, -1, 0, thickness=2)
    
    cleanup_models()

    # Format scaling info with proper unit display
    if offset_unit == "inches":
        offset_display = f"{offset} inches ({offset_mm:.3f} mm)"
    else:
        offset_display = f"{offset} mm"
    
    scale_info = f"Scale: {scaling_factor:.6f} mm/px | Paper: {paper_size} | Offset: {offset_display}"

    return (
        shrunked_img_contours,
        outlines,
        dxf,
        dilated_mask_orig,
        scale_info
    )

def predict_full_paper(image, paper_size, offset_value_mm = 0.02,offset_unit='mm', enable_finger_cut='Off', selected_outputs=None):
    finger_flag = "On" if enable_finger_cut == "On" else "Off"
    
    # Always get all outputs from predict_with_paper
    ann, outlines, dxf_path, mask, scale_info = predict_with_paper(
        image,
        paper_size,
        offset=offset_value_mm,
        offset_unit= offset_unit,
        finger_clearance=finger_flag,
    )
    
    # Return based on selected outputs
    return (
        dxf_path,  # Always return DXF
        ann if "Annotated Image" in selected_outputs else None,
        outlines if "Outlines" in selected_outputs else None,
        mask if "Mask" in selected_outputs else None,
        scale_info  # Always return scaling info
    )

# Gradio Interface
if __name__ == "__main__":
    os.makedirs("./outputs", exist_ok=True)

    with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo:
         # Example gallery
        gr.Markdown("""
            # Paper-Based DXF Generator
            
            Upload an image with a single object placed on paper (A4, A3, or US Letter).
            The paper serves as a size reference for accurate DXF generation.
            """)
        with gr.Row():
            gr.Markdown("""
            **Instructions:**
            1. Place a single object on paper
            2. Select the correct paper size
            3. Configure options as needed
            4. Click Submit to generate DXF
            """)
            gr.Markdown("""
            ### Tips for Best Results:
            - Ensure good lighting and clear paper edges
            - Place object completely at the center of the paper
            - Avoid shadows that might interfere with detection
            - Use high contrast between object and paper
            """)
        
        
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Input Image (Object on Paper)", 
                    type="numpy",
                    height=400
                )
                
                paper_size = gr.Radio(
                    choices=["A4", "A3", "US Letter"],
                    value="A4",
                    label="Paper Size",
                    info="Select the paper size used in your image"
                )
                
                # with gr.Group():
                #     gr.Markdown("### Contour Offset")
                #     with gr.Row():
                #         offset_value_mm = gr.Number(
                #             value=0.02,
                #             label="Offset",
                #             info="Expand contours outward by this amount",
                #             precision=3,
                #             minimum=0,
                #             maximum=50
                #         )
                #         offset_unit = gr.Dropdown(
                #             choices=["mm", "inches"],
                #             value="mm",
                #             label="Unit"
                #         )

                # with gr.Group():
                #     gr.Markdown("### Finger Cuts")
                #     enable_finger_cut = gr.Radio(
                #         choices=["On", "Off"],
                #         value="Off",
                #         label="Enable Finger Cuts",
                #         info="Add circular cuts for easier handling"
                #     )
                
                output_options = gr.CheckboxGroup(
                    choices=["Annotated Image", "Outlines", "Mask"],
                    value=[],
                    label="Additional Outputs",
                    info="DXF is always included"
                )
                
                submit_btn = gr.Button("Generate DXF", variant="primary", size="lg")
            
            with gr.Column():
                with gr.Group():
                    gr.Markdown("### Generated Files")
                    dxf_file = gr.File(label="DXF File", file_types=[".dxf"])
                    scale_info = gr.Textbox(label="Scaling Information", interactive=False)
                
                with gr.Group():
                    gr.Markdown("### Preview Images")
                    output_image = gr.Image(label="Annotated Image", visible=False)
                    outlines_image = gr.Image(label="Outlines", visible=False) 
                    mask_image = gr.Image(label="Mask", visible=False)
        
        def update_outputs_visibility(selected):
            return [
                gr.update(visible="Annotated Image" in selected),
                gr.update(visible="Outlines" in selected),
                gr.update(visible="Mask" in selected)
            ]
        
        
        output_options.change(
            fn=update_outputs_visibility,
            inputs=output_options,
            outputs=[output_image, outlines_image, mask_image]
        )
        
        submit_btn.click(
            fn=predict_full_paper,
            inputs=[
                input_image, 
                paper_size, 
                gr.Number(value=0.02, visible=False),  # Create hidden components
                gr.Textbox(value='mm', visible=False),
                gr.Textbox(value='Off', visible=False),
                output_options
            ],
            outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info]
        )
        
       

    demo.launch(share=True)