MELABench / src /leaderboard /read_evals.py
KurtMica's picture
Model output submission.
236bb17
import glob
import json
import os
from collections import defaultdict
from dataclasses import dataclass
from pathlib import Path
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelTraining, Tasks, Precision, WeightType, MalteseTraining
from src.envs import TOKEN, API
from src.submission.check_validity import is_model_on_hub, get_model_size
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
n_shot: int = 0
prompt_version: str = "1.0_english"
seed: int = 0
model_training: ModelTraining = ModelTraining.NK # Pretrained, fine tuned, ...
maltese_training: MalteseTraining = MalteseTraining.NK # none, pre-training, ...
language_count: int = None
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_files(self, seed_directory):
"""Inits the result from the specific model result file"""
with open(list(seed_directory.values())[0][0]) as fp:
data = json.load(fp)
config = data.get("config")
precision = Precision.from_str(config.get("model_dtype"))
n_shot = config.get("n_shot")
prompt_version = config.get("prompt_version")
seed = config.get("seed")
model_training = ModelTraining.from_str(config.get("model_training"))
maltese_training = MalteseTraining.from_str(config.get("maltese_training"))
language_count = config.get("language_count")
model_size = config.get("model_num_parameters")
# Get model and org
org_and_model = config.get("model", None)
org_and_model = org_and_model.split("/", 1)
full_model = "/".join(org_and_model)
revision = config.get("model_sha", config.get("model_revision", "main"))
model_args = config.get("model_args")
model_args["revision"] = revision
model_args["trust_remote_code"] = True
model_args["cache_dir"] = None
base_model = None
if "pretrained" in model_args:
base_model = model_args.pop("pretrained")
still_on_hub, _, model_config = is_model_on_hub(
base_model or full_model, model_args, test_tokenizer=False, token=TOKEN,
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
license = "?"
likes = 0
if still_on_hub:
try:
model_info = API.model_info(repo_id=full_model, revision=revision, token=TOKEN)
if not model_size:
model_size = get_model_size(model_info=model_info, precision=precision)
license = model_info.cardData.get("license")
likes = model_info.likes
except Exception:
pass
# Extract results available in this file (some results are split in several files)
results = defaultdict(dict)
for seed, file_paths in seed_directory.items():
for file_path in file_paths:
with open(file_path) as file:
data = json.load(file)["results"]
for task in Tasks:
task = task.value
if task.benchmark not in data or task.metric not in data[task.benchmark]:
continue
score = data[task.benchmark][task.metric]
if task.metric in ("accuracy", "f1", "loglikelihood", "rouge"):
score *= 100
results[task.benchmark + "_" + task.metric][seed] = score
results = {task: np.mean(list(seed_results.values())) for task, seed_results in results.items()}
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{'_'.join(org_and_model)}_{revision}_{precision.value.name}_{n_shot}_{prompt_version}_{seed}"
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
model_training=model_training,
maltese_training=maltese_training,
language_count=language_count or "?",
precision=precision,
revision=revision,
n_shot=n_shot,
prompt_version=prompt_version,
seed=seed,
still_on_hub=still_on_hub,
architecture=architecture,
likes=likes or "?",
num_params=model_size and round(model_size / 1e9, 3),
license=license,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_training = ModelTraining.from_str(request.get("model_training", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.n_shot.name: self.n_shot,
AutoEvalColumn.prompt_version.name: self.prompt_version,
AutoEvalColumn.model_training.name: self.model_training.value.name,
AutoEvalColumn.maltese_training.name: self.maltese_training.value.name,
AutoEvalColumn.model_symbol.name: self.model_training.value.symbol + "/" + self.maltese_training.value.symbol,
AutoEvalColumn.language_count.name: self.language_count,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
}
results_by_task_type = defaultdict(list)
for task in Tasks:
result = self.results.get(task.value.benchmark + "_" + task.value.metric)
data_dict[task.value.col_name] = result
if task.value.is_primary_metric:
results_by_task_type[task.value.task_type].append(result)
results_averages = []
for task_type, task_type_results in results_by_task_type.items():
average = sum([score for score in task_type_results if score is not None]) / len(task_type_results)
data_dict[getattr(AutoEvalColumn, task_type.value.name).name] = average
results_averages.append(average)
data_dict[AutoEvalColumn.average.name] = np.mean(results_averages) if len(results_averages) > 1 else results_averages[0]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = defaultdict(lambda: defaultdict(list))
for directory_path in Path(results_path).rglob("*-shot/*/*/"):
for file_path in directory_path.rglob("*-seed/results_*.json"):
seed = file_path.parent.name.removesuffix("-seed")
model_result_filepaths[directory_path.relative_to(results_path)][seed].append(file_path)
eval_results = {}
for model_result_filepath in model_result_filepaths.values():
# Creation of result
eval_result = EvalResult.init_from_json_files(model_result_filepath)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results