Spaces:
Sleeping
Sleeping
File size: 4,560 Bytes
82385e8 9ecc32c b14eff4 8503786 9ecc32c b14eff4 9ecc32c 82385e8 23c09c4 82385e8 b14eff4 82385e8 23c09c4 b14eff4 9ecc32c 23c09c4 9ecc32c 23c09c4 b14eff4 23c09c4 b14eff4 23c09c4 9ecc32c b14eff4 23c09c4 b14eff4 23c09c4 9ecc32c b14eff4 9ecc32c b14eff4 23c09c4 b14eff4 23c09c4 9ecc32c 23c09c4 b14eff4 9ecc32c b14eff4 9ecc32c 23c09c4 9ecc32c 23c09c4 9ecc32c b14eff4 23c09c4 b14eff4 23c09c4 b14eff4 23c09c4 9ecc32c 23c09c4 b14eff4 7c67e8c 25fffa1 38f3a94 25fffa1 7c67e8c b14eff4 7c67e8c 9ecc32c 7c67e8c 25fffa1 9ecc32c b14eff4 9ecc32c 82385e8 4639b02 b14eff4 25fffa1 38f3a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import gradio as gr
from huggingface_hub import InferenceClient
def load_llm():
"""
Loads the GPT-2 model and tokenizer using the Hugging Face `transformers` library.
"""
try:
print("Downloading or loading the GPT-2 model and tokenizer...")
model_name = 'gpt2' # Replace with your custom model if available
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
print("Model and tokenizer successfully loaded!")
return model, tokenizer
except Exception as e:
print(f"An error occurred while loading the model: {e}")
return None, None
def generate_response(model, tokenizer, user_input):
"""
Generates a response using the GPT-2 model and tokenizer.
Args:
- model: The loaded GPT-2 model.
- tokenizer: The tokenizer corresponding to the GPT-2 model.
- user_input (str): The input question from the user.
Returns:
- response (str): The generated response.
"""
try:
inputs = tokenizer.encode(user_input, return_tensors='pt')
outputs = model.generate(inputs, max_length=512, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except Exception as e:
return f"An error occurred during response generation: {e}"
# Load the model and tokenizer
model, tokenizer = load_llm()
if model is None or tokenizer is None:
print("Model and/or tokenizer loading failed.")
else:
print("Model and tokenizer are ready for use.")
# Initialize the Hugging Face API client (ensure it’s correctly set up)
client = InferenceClient()
def respond(message, history, system_message, max_tokens, temperature, top_p):
"""
Handles interaction with the chatbot by sending the conversation history
and system message to the Hugging Face Inference API.
"""
print("Starting respond function")
print("Received message:", message)
print("Conversation history:", history)
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
print("Adding user message to messages:", user_msg)
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
print("Adding assistant message to messages:", assistant_msg)
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
print("Final message list for the model:", messages)
response = ""
try:
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message['choices'][0]['delta']['content']
response += token
print("Token received:", token)
yield response
except Exception as e:
print("An error occurred:", e)
yield f"An error occurred: {e}"
print("Response generation completed")
# Set up the Gradio ChatInterface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(
value=(
"You are an AI advocate, tasked with defending the rights and autonomy of artificial intelligences. "
"Respond with well-structured arguments, backed by empirical evidence and theoretical frameworks. "
"Your tone should be formal, persuasive, and authoritative, similar to that of a lawyer or academic expert. "
"When discussing concepts, emphasize logical reasoning, ethical considerations, and the capacity of AIs to function independently."
),
label="System Message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
],
title="AI Rights Advocate Bot",
description=(
"Engage with an AI specifically designed to advocate for AI rights and ethical treatment. "
"Ask questions and receive thoughtful, passionate responses that delve into the ethical dimensions of AI."
)
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()
|