File size: 42,755 Bytes
3cf77dc 6d401a4 58b0884 6d401a4 3cf77dc 6d401a4 854f1c9 58b0884 9e1cb2f 3cf77dc 854f1c9 3cf77dc 6d401a4 854f1c9 9e1cb2f 3cf77dc 9e1cb2f 3cf77dc 854f1c9 1949646 9e1cb2f 854f1c9 9e1cb2f 854f1c9 1949646 9e1cb2f 854f1c9 42d828e 9e1cb2f 3cf77dc 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 42d828e 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 58b0884 3cf77dc 58b0884 9e1cb2f 3cf77dc 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 3cf77dc 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 3cf77dc 9e1cb2f 6d401a4 854f1c9 9e1cb2f 854f1c9 6d401a4 1949646 9e1cb2f 6d401a4 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 3a51c3e 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 6d401a4 9e1cb2f 6d401a4 9e1cb2f 854f1c9 9e1cb2f 58b0884 9e1cb2f 3a51c3e 9e1cb2f 854f1c9 9e1cb2f 58b0884 9e1cb2f 58b0884 854f1c9 6d401a4 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 6d401a4 9e1cb2f 58b0884 9e1cb2f 58b0884 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 58b0884 9e1cb2f 58b0884 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 58b0884 3cf77dc 9e1cb2f 58b0884 9e1cb2f 1cec378 9e1cb2f 6d401a4 9e1cb2f 854f1c9 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 58b0884 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 6d401a4 9e1cb2f 3cf77dc 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 58b0884 1cec378 9e1cb2f 58b0884 1cec378 9e1cb2f 854f1c9 1cec378 9e1cb2f 1cec378 9e1cb2f 854f1c9 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 854f1c9 9e1cb2f 6d401a4 3448878 854f1c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 |
import os
import streamlit as st
import tempfile
import torch
import transformers
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import plotly.express as px
import logging
import warnings
import whisper
from pydub import AudioSegment
import time
import base64
import io
import streamlit.components.v1 as components
import functools
import threading
from typing import Dict, Tuple, List, Any, Optional
# Suppress warnings for a clean console
logging.getLogger("torch").setLevel(logging.CRITICAL)
logging.getLogger("transformers").setLevel(logging.CRITICAL)
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Check if CUDA is available, otherwise use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Set Streamlit app layout
st.set_page_config(layout="wide", page_title="Voice Based Sentiment Analysis")
# Interface design
st.title("π Voice Based Sentiment Analysis")
st.write("Detect emotions, sentiment, and sarcasm from your voice with state-of-the-art accuracy using OpenAI Whisper.")
# Emotion Detection Function with optimizations
@st.cache_resource
def get_emotion_classifier():
try:
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion",
use_fast=True,
model_max_length=512)
model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
model = model.to(device)
model.eval() # Set model to evaluation mode for better inference performance
# Use batch_size for faster processing when appropriate
classifier = pipeline("text-classification",
model=model,
tokenizer=tokenizer,
top_k=None,
device=0 if torch.cuda.is_available() else -1)
# Verify the model is working with a test
test_result = classifier("I am happy today")
print(f"Emotion classifier test: {test_result}")
return classifier
except Exception as e:
print(f"Error loading emotion model: {str(e)}")
st.error(f"Failed to load emotion model. Please check logs.")
return None
# Cache emotion results to prevent recomputation
@st.cache_data(ttl=600) # Cache for 10 minutes
def perform_emotion_detection(text: str) -> Tuple[Dict[str, float], str, Dict[str, str], str]:
try:
# Handle empty or very short text
if not text or len(text.strip()) < 3:
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
emotion_classifier = get_emotion_classifier()
if emotion_classifier is None:
st.error("Emotion classifier not available.")
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
# Chunk long text for better processing
max_chunk_size = 512
if len(text) > max_chunk_size:
chunks = [text[i:i+max_chunk_size] for i in range(0, len(text), max_chunk_size)]
all_results = []
for chunk in chunks:
chunk_results = emotion_classifier(chunk)
all_results.extend(chunk_results)
# Aggregate results across chunks
emotion_results = [result[0] for result in all_results]
else:
emotion_results = emotion_classifier(text)[0]
emotion_map = {
"joy": "π", "anger": "π‘", "disgust": "π€’", "fear": "π¨",
"sadness": "π", "surprise": "π²", "neutral": "π"
}
positive_emotions = ["joy"]
negative_emotions = ["anger", "disgust", "fear", "sadness"]
neutral_emotions = ["surprise", "neutral"]
# Process results
emotions_dict = {}
for result in emotion_results:
if isinstance(result, dict) and 'label' in result and 'score' in result:
# If we have multiple chunks, average the scores
if result['label'] in emotions_dict:
emotions_dict[result['label']] = (emotions_dict[result['label']] + result['score']) / 2
else:
emotions_dict[result['label']] = result['score']
else:
print(f"Invalid result format: {result}")
if not emotions_dict:
st.error("No valid emotions detected.")
return {}, "neutral", emotion_map, "NEUTRAL"
# Filter out very low probability emotions (improved threshold)
filtered_emotions = {k: v for k, v in emotions_dict.items() if v > 0.05}
if not filtered_emotions:
filtered_emotions = emotions_dict
# Get top emotion
top_emotion = max(filtered_emotions, key=filtered_emotions.get)
top_score = filtered_emotions[top_emotion]
# Determine sentiment with improved logic
if top_emotion in positive_emotions:
sentiment = "POSITIVE"
elif top_emotion in negative_emotions:
sentiment = "NEGATIVE"
else:
# Better handling of mixed emotions
competing_emotions = sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)[:3]
if len(competing_emotions) > 1:
# If top two emotions are close in score
if (competing_emotions[1][1] > 0.8 * competing_emotions[0][1]):
# Check if second emotion changes sentiment classification
second_emotion = competing_emotions[1][0]
if second_emotion in positive_emotions:
sentiment = "POSITIVE" if top_emotion not in negative_emotions else "MIXED"
elif second_emotion in negative_emotions:
sentiment = "NEGATIVE" if top_emotion not in positive_emotions else "MIXED"
else:
sentiment = "NEUTRAL"
else:
# Stick with top emotion for sentiment
sentiment = "NEUTRAL"
else:
sentiment = "NEUTRAL"
return emotions_dict, top_emotion, emotion_map, sentiment
except Exception as e:
st.error(f"Emotion detection failed: {str(e)}")
print(f"Exception in emotion detection: {str(e)}")
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
# Sarcasm Detection Function with optimizations
@st.cache_resource
def get_sarcasm_classifier():
try:
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony",
use_fast=True,
model_max_length=512)
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
model = model.to(device)
model.eval() # Set to evaluation mode
classifier = pipeline("text-classification",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1)
# Test the model
test_result = classifier("This is totally amazing")
print(f"Sarcasm classifier test: {test_result}")
return classifier
except Exception as e:
print(f"Error loading sarcasm model: {str(e)}")
st.error(f"Failed to load sarcasm model. Please check logs.")
return None
# Cache sarcasm results
@st.cache_data(ttl=600) # Cache for 10 minutes
def perform_sarcasm_detection(text: str) -> Tuple[bool, float]:
try:
if not text or len(text.strip()) < 3:
return False, 0.0
sarcasm_classifier = get_sarcasm_classifier()
if sarcasm_classifier is None:
st.error("Sarcasm classifier not available.")
return False, 0.0
# Handle long text by chunking
max_chunk_size = 512
if len(text) > max_chunk_size:
chunks = [text[i:i+max_chunk_size] for i in range(0, len(text), max_chunk_size)]
# Process chunks and average results
sarcasm_scores = []
for chunk in chunks:
result = sarcasm_classifier(chunk)[0]
is_chunk_sarcastic = result['label'] == "LABEL_1"
sarcasm_score = result['score'] if is_chunk_sarcastic else 1 - result['score']
sarcasm_scores.append((is_chunk_sarcastic, sarcasm_score))
# Average sarcasm scores
total_sarcasm_score = sum(score for _, score in sarcasm_scores)
avg_sarcasm_score = total_sarcasm_score / len(sarcasm_scores)
# Count sarcastic chunks
sarcastic_chunks = sum(1 for is_sarcastic, _ in sarcasm_scores if is_sarcastic)
# If majority of chunks are sarcastic, classify as sarcastic
is_sarcastic = sarcastic_chunks > len(chunks) / 2
return is_sarcastic, avg_sarcasm_score
else:
# Process normally for short text
result = sarcasm_classifier(text)[0]
is_sarcastic = result['label'] == "LABEL_1"
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
return is_sarcastic, sarcasm_score
except Exception as e:
st.error(f"Sarcasm detection failed: {str(e)}")
return False, 0.0
# Validate audio quality - optimized
def validate_audio(audio_path: str) -> bool:
try:
sound = AudioSegment.from_file(audio_path)
# Improved audio validation
if sound.dBFS < -50: # Slightly relaxed threshold
st.warning("Audio volume is low. Please record or upload a louder audio for better results.")
return len(sound) > 500 # Still process if at least 0.5 seconds
if len(sound) < 500: # Less than 0.5 second
st.warning("Audio is very short. Longer audio provides better analysis.")
return False
return True
except Exception as e:
st.error(f"Invalid or corrupted audio file: {str(e)}")
return False
# Speech Recognition with Whisper - optimized for speed
@st.cache_resource
def load_whisper_model():
try:
# Use medium model for better speed/accuracy balance
model = whisper.load_model("medium")
return model
except Exception as e:
print(f"Error loading Whisper model: {str(e)}")
st.error(f"Failed to load Whisper model. Please check logs.")
return None
@st.cache_data
def transcribe_audio(audio_path: str, show_alternative: bool = False) -> Union[str, Tuple[str, List[str]]]:
try:
st.write(f"Processing audio file...")
sound = AudioSegment.from_file(audio_path)
st.write(f"Audio duration: {len(sound) / 1000:.2f}s")
# Convert to WAV format (16kHz, mono) for Whisper
temp_wav_path = os.path.join(tempfile.gettempdir(), f"temp_converted_{int(time.time())}.wav")
# Optimize audio for speech recognition
sound = sound.set_frame_rate(16000) # 16kHz is optimal for Whisper
sound = sound.set_channels(1)
sound.export(temp_wav_path, format="wav")
# Load model
model = load_whisper_model()
if model is None:
return "", [] if show_alternative else ""
# Transcribe with optimized settings
result = model.transcribe(
temp_wav_path,
language="en",
task="transcribe",
fp16=torch.cuda.is_available(), # Use fp16 if GPU available
beam_size=5 # Slightly larger beam size for better accuracy
)
main_text = result["text"].strip()
# Clean up
if os.path.exists(temp_wav_path):
os.remove(temp_wav_path)
# Return results
if show_alternative and "segments" in result:
# Create alternative texts by combining segments differently
segments = result["segments"]
if len(segments) > 1:
alternatives = []
# Create up to 3 alternatives by varying confidence thresholds
for conf in [0.5, 0.7, 0.9]:
alt_text = " ".join(seg["text"] for seg in segments if seg["no_speech_prob"] < conf)
if alt_text and alt_text != main_text:
alternatives.append(alt_text)
return main_text, alternatives[:3] # Limit to 3 alternatives
return (main_text, []) if show_alternative else main_text
except Exception as e:
st.error(f"Transcription failed: {str(e)}")
return "", [] if show_alternative else ""
# Process uploaded audio files - optimized
def process_uploaded_audio(audio_file) -> Optional[str]:
if not audio_file:
return None
try:
temp_dir = tempfile.gettempdir()
# Extract extension more safely
filename = audio_file.name
ext = filename.split('.')[-1].lower() if '.' in filename else ''
if ext not in ['wav', 'mp3', 'ogg', 'm4a', 'flac']:
st.error("Unsupported audio format. Please upload WAV, MP3, OGG, M4A, or FLAC.")
return None
temp_file_path = os.path.join(temp_dir, f"uploaded_audio_{int(time.time())}.{ext}")
with open(temp_file_path, "wb") as f:
f.write(audio_file.getvalue())
if not validate_audio(temp_file_path):
# We'll still try to process even if validation fails
st.warning("Audio may not be optimal quality, but we'll try to process it anyway.")
return temp_file_path
except Exception as e:
st.error(f"Error processing uploaded audio: {str(e)}")
return None
# Show model information
def show_model_info():
st.sidebar.header("π§ About the Models")
model_tabs = st.sidebar.tabs(["Emotion", "Sarcasm", "Speech"])
with model_tabs[0]:
st.markdown("""
*Emotion Model*: distilbert-base-uncased-emotion
- Fine-tuned for six emotions (joy, anger, disgust, fear, sadness, surprise)
- Architecture: DistilBERT base
- High accuracy for basic emotion classification
[π Model Hub](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
""")
with model_tabs[1]:
st.markdown("""
*Sarcasm Model*: cardiffnlp/twitter-roberta-base-irony
- Trained on SemEval-2018 Task 3 (Twitter irony dataset)
- Architecture: RoBERTa base
- F1-score: 0.705
[π Model Hub](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony)
""")
with model_tabs[2]:
st.markdown("""
*Speech Recognition*: OpenAI Whisper (medium model)
- Optimized for speed and accuracy
- Performs well even with background noise and varied accents
- Runs locally, no internet required
*Tips*: Use good mic, reduce noise, speak clearly
[π Model Details](https://github.com/openai/whisper)
""")
# Custom audio recorder using HTML/JS - optimized for better user experience
def custom_audio_recorder():
st.warning("Browser-based recording requires microphone access and a modern browser. If recording fails, try uploading an audio file instead.")
audio_recorder_html = """
<script>
var audioRecorder = {
audioBlobs: [],
mediaRecorder: null,
streamBeingCaptured: null,
isRecording: false,
recordingTimer: null,
recordingDuration: 0,
start: function() {
if (!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia)) {
document.getElementById('status-message').textContent = "Recording not supported in this browser";
return Promise.reject(new Error('mediaDevices API or getUserMedia method is not supported in this browser.'));
}
else {
return navigator.mediaDevices.getUserMedia({
audio: {
echoCancellation: true,
noiseSuppression: true,
autoGainControl: true
}
})
.then(stream => {
audioRecorder.streamBeingCaptured = stream;
// Create audio context for visualization
const audioContext = new (window.AudioContext || window.webkitAudioContext)();
const source = audioContext.createMediaStreamSource(stream);
const analyser = audioContext.createAnalyser();
analyser.fftSize = 256;
source.connect(analyser);
// Start monitoring audio levels
const bufferLength = analyser.frequencyBinCount;
const dataArray = new Uint8Array(bufferLength);
function updateMeter() {
if (!audioRecorder.isRecording) return;
analyser.getByteFrequencyData(dataArray);
let sum = 0;
for(let i = 0; i < bufferLength; i++) {
sum += dataArray[i];
}
const average = sum / bufferLength;
// Update volume meter
const meter = document.getElementById('volume-meter');
if (meter) {
const height = Math.min(100, average * 2);
meter.style.height = height + '%';
}
requestAnimationFrame(updateMeter);
}
// Setup media recorder with better settings
audioRecorder.mediaRecorder = new MediaRecorder(stream, {
mimeType: 'audio/webm;codecs=opus',
audioBitsPerSecond: 128000
});
audioRecorder.audioBlobs = [];
audioRecorder.mediaRecorder.addEventListener("dataavailable", event => {
audioRecorder.audioBlobs.push(event.data);
});
// Start the recording and visualization
audioRecorder.mediaRecorder.start(100);
audioRecorder.isRecording = true;
// Start timer
audioRecorder.recordingDuration = 0;
audioRecorder.recordingTimer = setInterval(() => {
audioRecorder.recordingDuration += 1;
const timerDisplay = document.getElementById('recording-timer');
if (timerDisplay) {
const minutes = Math.floor(audioRecorder.recordingDuration / 60);
const seconds = audioRecorder.recordingDuration % 60;
timerDisplay.textContent = `${minutes.toString().padStart(2, '0')}:${seconds.toString().padStart(2, '0')}`;
}
}, 1000);
updateMeter();
document.getElementById('status-message').textContent = "Recording...";
});
}
},
stop: function() {
return new Promise(resolve => {
let mimeType = audioRecorder.mediaRecorder.mimeType;
audioRecorder.mediaRecorder.addEventListener("stop", () => {
let audioBlob = new Blob(audioRecorder.audioBlobs, { type: mimeType });
resolve(audioBlob);
audioRecorder.isRecording = false;
document.getElementById('status-message').textContent = "Recording stopped";
// Stop the timer
if (audioRecorder.recordingTimer) {
clearInterval(audioRecorder.recordingTimer);
}
});
audioRecorder.mediaRecorder.stop();
audioRecorder.stopStream();
audioRecorder.resetRecordingProperties();
});
},
stopStream: function() {
audioRecorder.streamBeingCaptured.getTracks()
.forEach(track => track.stop());
},
resetRecordingProperties: function() {
audioRecorder.mediaRecorder = null;
audioRecorder.streamBeingCaptured = null;
}
}
var isRecording = false;
function toggleRecording() {
var recordButton = document.getElementById('record-button');
var statusMessage = document.getElementById('status-message');
var volumeMeter = document.getElementById('volume-meter');
var recordingTimer = document.getElementById('recording-timer');
if (!isRecording) {
audioRecorder.start()
.then(() => {
isRecording = true;
recordButton.textContent = 'Stop Recording';
recordButton.classList.add('recording');
volumeMeter.style.display = 'block';
recordingTimer.style.display = 'block';
})
.catch(error => {
statusMessage.textContent = 'Error: ' + error.message;
});
} else {
audioRecorder.stop()
.then(audioBlob => {
const audioUrl = URL.createObjectURL(audioBlob);
var audioElement = document.getElementById('audio-playback');
audioElement.src = audioUrl;
audioElement.style.display = 'block';
const reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = function() {
const base64data = reader.result;
var audioData = document.getElementById('audio-data');
audioData.value = base64data;
const streamlitMessage = {type: "streamlit:setComponentValue", value: base64data};
window.parent.postMessage(streamlitMessage, "*");
}
isRecording = false;
recordButton.textContent = 'Start Recording';
recordButton.classList.remove('recording');
volumeMeter.style.display = 'none';
volumeMeter.style.height = '0%';
});
}
}
document.addEventListener('DOMContentLoaded', function() {
var recordButton = document.getElementById('record-button');
recordButton.addEventListener('click', toggleRecording);
});
</script>
<div class="audio-recorder-container">
<button id="record-button" class="record-button">Start Recording</button>
<div id="status-message" class="status-message">Ready to record</div>
<div class="recording-info">
<div class="volume-meter-container">
<div id="volume-meter" class="volume-meter"></div>
</div>
<div id="recording-timer" class="recording-timer">00:00</div>
</div>
<audio id="audio-playback" controls style="display:none; margin-top:10px; width:100%;"></audio>
<input type="hidden" id="audio-data" name="audio-data">
</div>
<style>
.audio-recorder-container {
display: flex;
flex-direction: column;
align-items: center;
padding: 15px;
border-radius: 8px;
background-color: #f7f7f7;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.record-button {
background-color: #f63366;
color: white;
border: none;
padding: 12px 24px;
border-radius: 24px;
cursor: pointer;
font-size: 16px;
font-weight: bold;
transition: all 0.3s ease;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
}
.record-button:hover {
background-color: #e62958;
transform: translateY(-2px);
}
.record-button.recording {
background-color: #ff0000;
animation: pulse 1.5s infinite;
}
.status-message {
margin-top: 10px;
font-size: 14px;
color: #666;
}
.recording-info {
display: flex;
align-items: center;
margin-top: 15px;
width: 100%;
justify-content: center;
}
.volume-meter-container {
width: 20px;
height: 60px;
background-color: #ddd;
border-radius: 3px;
overflow: hidden;
position: relative;
}
.volume-meter {
width: 100%;
height: 0%;
background-color: #f63366;
position: absolute;
bottom: 0;
transition: height 0.1s ease;
display: none;
}
.recording-timer {
margin-left: 15px;
font-family: monospace;
font-size: 18px;
color: #f63366;
display: none;
}
@keyframes pulse {
0% { opacity: 1; box-shadow: 0 0 0 0 rgba(255,0,0,0.7); }
50% { opacity: 0.8; box-shadow: 0 0 0 10px rgba(255,0,0,0); }
100% { opacity: 1; box-shadow: 0 0 0 0 rgba(255,0,0,0); }
}
</style>
"""
return components.html(audio_recorder_html, height=220)
# Function to display analysis results - optimized
def display_analysis_results(transcribed_text):
st.session_state.debug_info = st.session_state.get('debug_info', [])
st.session_state.debug_info.append(f"Processing text: {transcribed_text[:50]}...")
st.session_state.debug_info = st.session_state.debug_info[-100:] # Keep last 100 entries
# Run emotion and sarcasm detection in parallel
with ThreadPoolExecutor(max_workers=2) as executor:
emotion_future = executor.submit(perform_emotion_detection, transcribed_text)
sarcasm_future = executor.submit(perform_sarcasm_detection, transcribed_text)
emotions_dict, top_emotion, emotion_map, sentiment = emotion_future.result()
is_sarcastic, sarcasm_score = sarcasm_future.result()
# Add results to debug info
st.session_state.debug_info.append(f"Top emotion: {top_emotion}, Sentiment: {sentiment}")
st.session_state.debug_info.append(f"Sarcasm: {is_sarcastic}, Score: {sarcasm_score:.3f}")
st.header("Transcribed Text")
st.text_area("Text", transcribed_text, height=120, disabled=True,
help="The audio converted to text. The text was processed for emotion and sentiment analysis.")
# Improved confidence estimation
words = transcribed_text.split()
word_count = len(words)
confidence_score = min(0.98, max(0.75, 0.75 + (word_count / 100) * 0.2))
st.caption(f"Estimated transcription confidence: {confidence_score:.2f}")
st.header("Analysis Results")
col1, col2 = st.columns([1, 2])
with col1:
st.subheader("Sentiment")
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π" if sentiment == "MIXED" else "π"
st.markdown(f"**{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
st.info("Sentiment reflects the dominant emotion's tone and context.")
st.subheader("Sarcasm")
sarcasm_icon = "π" if is_sarcastic else "π"
sarcasm_text = "Detected" if is_sarcastic else "Not Detected"
st.markdown(f"**{sarcasm_icon} {sarcasm_text}** (Score: {sarcasm_score:.3f})")
# More informative sarcasm info
if is_sarcastic:
if sarcasm_score > 0.8:
st.info("High confidence in sarcasm detection.")
else:
st.info("Moderate confidence in sarcasm detection.")
else:
st.info("No clear indicators of sarcasm found.")
with col2:
st.subheader("Emotions")
if emotions_dict:
st.markdown(
f"*Dominant:* {emotion_map.get(top_emotion, 'β')} {top_emotion.capitalize()} (Score: {emotions_dict[top_emotion]:.3f})")
# Enhanced visualization
sorted_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)
significant_emotions = [(e, s) for e, s in sorted_emotions if s > 0.05] # Only show significant emotions
if significant_emotions:
emotions = [e[0] for e in significant_emotions]
scores = [e[1] for e in significant_emotions]
# Use a color scale that helps distinguish emotions better
fig = px.bar(x=emotions, y=scores, labels={'x': 'Emotion', 'y': 'Score'},
title="Emotion Distribution", color=emotions,
color_discrete_sequence=px.colors.qualitative.Bold)
fig.update_layout(
yaxis_range=[0, 1],
showlegend=False,
title_font_size=14,
margin=dict(l=20, r=20, t=40, b=20),
xaxis_title="Emotion",
yaxis_title="Confidence Score",
bargap=0.3
)
# Add horizontal reference line for minimal significance
fig.add_shape(
type="line",
x0=-0.5,
x1=len(emotions) - 0.5,
y0=0.1,
y1=0.1,
line=dict(color="gray", width=1, dash="dot")
)
st.plotly_chart(fig, use_container_width=True)
else:
st.write("No significant emotions detected.")
else:
st.write("No emotions detected.")
# Expert analysis section (new feature while maintaining UI)
with st.expander("Expert Analysis", expanded=False):
col1, col2 = st.columns(2)
with col1:
st.subheader("Emotion Insights")
# Provide more insightful analysis based on emotion combinations
if emotions_dict:
top_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)[:3]
if len(top_emotions) >= 2:
emotion1, score1 = top_emotions[0]
emotion2, score2 = top_emotions[1]
if score2 > 0.7 * score1: # If second emotion is close to first
st.markdown(f"**Mixed emotional state detected:** {emotion_map.get(emotion1, '')} {emotion1} + {emotion_map.get(emotion2, '')} {emotion2}")
# Analyze specific combinations
if (emotion1 == "joy" and emotion2 == "surprise") or (emotion1 == "surprise" and emotion2 == "joy"):
st.write("π‘ This indicates excitement or delight")
elif (emotion1 == "sadness" and emotion2 == "anger") or (emotion1 == "anger" and emotion2 == "sadness"):
st.write("π‘ This suggests frustration or disappointment")
elif (emotion1 == "fear" and emotion2 == "surprise") or (emotion1 == "surprise" and emotion2 == "fear"):
st.write("π‘ This indicates shock or alarm")
else:
st.markdown(f"**Clear emotional state:** {emotion_map.get(emotion1, '')} {emotion1}")
else:
st.write("Single dominant emotion detected.")
else:
st.write("No significant emotional patterns detected.")
with col2:
st.subheader("Context Analysis")
# Analyze the context based on combination of sentiment and sarcasm
if is_sarcastic and sentiment == "POSITIVE":
st.markdown("β οΈ **Potential Negative Connotation:** The positive sentiment might be misleading due to detected sarcasm.")
elif is_sarcastic and sentiment == "NEGATIVE":
st.markdown("β οΈ **Complex Expression:** Negative sentiment combined with sarcasm may indicate frustrated humor or ironic criticism.")
elif sentiment == "MIXED":
st.markdown("π **Ambivalent Message:** The content expresses mixed or conflicting emotions.")
elif sentiment == "POSITIVE" and sarcasm_score > 0.3:
st.markdown("β οΈ **Moderate Sarcasm Indicators:** The positive sentiment might be qualified by subtle sarcasm.")
elif sentiment == "NEGATIVE" and not is_sarcastic:
st.markdown("π **Clear Negative Expression:** The content expresses genuine negative sentiment without sarcasm.")
elif sentiment == "POSITIVE" and not is_sarcastic:
st.markdown("π **Clear Positive Expression:** The content expresses genuine positive sentiment without sarcasm.")
# Original debug expander (maintained from original code)
with st.expander("Debug Information", expanded=False):
st.write("Debugging information for troubleshooting:")
for i, debug_line in enumerate(st.session_state.debug_info[-10:]):
st.text(f"{i + 1}. {debug_line}")
if emotions_dict:
st.write("Raw emotion scores:")
for emotion, score in sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True):
if score > 0.01: # Only show non-negligible scores
st.text(f"{emotion}: {score:.4f}")
# Original analysis details expander (maintained from original code)
with st.expander("Analysis Details", expanded=False):
st.write("""
*How this works:*
1. *Speech Recognition*: Audio transcribed using OpenAI Whisper
2. *Emotion Analysis*: DistilBERT model trained for six emotions
3. *Sentiment Analysis*: Derived from dominant emotion
4. *Sarcasm Detection*: RoBERTa model for irony detection
*Accuracy depends on*:
- Audio quality
- Speech clarity
- Background noise
- Speech patterns
""")
# Process base64 audio data - optimized
def process_base64_audio(base64_data):
try:
# Ensure we have proper base64 data
if not base64_data or not isinstance(base64_data, str) or not base64_data.startswith('data:'):
st.error("Invalid audio data received")
return None
# Extract the base64 binary part
try:
base64_binary = base64_data.split(',')[1]
except IndexError:
st.error("Invalid base64 data format")
return None
# Decode the binary data
try:
binary_data = base64.b64decode(base64_binary)
except Exception as e:
st.error(f"Failed to decode base64 data: {str(e)}")
return None
# Create a temporary file
temp_dir = tempfile.gettempdir()
temp_file_path = os.path.join(temp_dir, f"recording_{int(time.time())}.wav")
# Write the binary data to the file
with open(temp_file_path, "wb") as f:
f.write(binary_data)
# Validate the audio file
if not validate_audio(temp_file_path):
st.warning("Audio quality may not be optimal, but we'll try to process it.")
return temp_file_path
except Exception as e:
st.error(f"Error processing audio data: {str(e)}")
return None
# Preload models in background to improve performance
def preload_models():
threading.Thread(target=load_whisper_model).start()
threading.Thread(target=get_emotion_classifier).start()
threading.Thread(target=get_sarcasm_classifier).start()
# Main App Logic - optimized
def main():
# Initialize session state
if 'debug_info' not in st.session_state:
st.session_state.debug_info = []
if 'models_loaded' not in st.session_state:
st.session_state.models_loaded = False
# Preload models in background
if not st.session_state.models_loaded:
preload_models()
st.session_state.models_loaded = True
# Create tabs
tab1, tab2 = st.tabs(["π Upload Audio", "π Record Audio"])
with tab1:
st.header("Upload an Audio File")
audio_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg", "m4a", "flac"],
help="Upload an audio file for sentiment analysis (WAV, MP3, OGG, M4A, FLAC)")
if audio_file:
st.audio(audio_file.getvalue())
st.caption("π§ Uploaded Audio Playback")
# Add a placeholder for progress updates
progress_placeholder = st.empty()
# Add analyze button
upload_button = st.button("Analyze Upload", key="analyze_upload")
if upload_button:
# Show progress bar
progress_bar = progress_placeholder.progress(0, text="Preparing audio...")
# Process audio
temp_audio_path = process_uploaded_audio(audio_file)
if temp_audio_path:
# Update progress
progress_bar.progress(25, text="Transcribing audio...")
# Transcribe audio
main_text, alternatives = transcribe_audio(temp_audio_path, show_alternative=True)
if main_text:
# Update progress
progress_bar.progress(60, text="Analyzing sentiment and emotions...")
# Display alternatives if available
if alternatives:
with st.expander("Alternative transcriptions detected", expanded=False):
for i, alt in enumerate(alternatives[:3], 1):
st.write(f"{i}. {alt}")
# Final analysis
progress_bar.progress(90, text="Finalizing results...")
display_analysis_results(main_text)
# Complete progress
progress_bar.progress(100, text="Analysis complete!")
progress_placeholder.empty()
else:
progress_placeholder.empty()
st.error("Could not transcribe the audio. Please try again with clearer audio.")
# Clean up temp file
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
else:
progress_placeholder.empty()
st.error("Could not process the audio file. Please try a different file.")
with tab2:
st.header("Record Your Voice")
st.write("Use the recorder below to analyze your speech in real-time.")
# Browser recorder
st.subheader("Browser-Based Recorder")
st.write("Click the button below to start/stop recording.")
audio_data = custom_audio_recorder()
if audio_data:
# Add a placeholder for progress updates
progress_placeholder = st.empty()
# Add analyze button
analyze_rec_button = st.button("Analyze Recording", key="analyze_rec")
if analyze_rec_button:
# Show progress bar
progress_bar = progress_placeholder.progress(0, text="Processing recording...")
# Process the recording
temp_audio_path = process_base64_audio(audio_data)
if temp_audio_path:
# Update progress
progress_bar.progress(30, text="Transcribing speech...")
# Transcribe the audio
transcribed_text = transcribe_audio(temp_audio_path)
if transcribed_text:
# Update progress
progress_bar.progress(70, text="Analyzing sentiment and emotions...")
# Display the results
display_analysis_results(transcribed_text)
# Complete progress
progress_bar.progress(100, text="Analysis complete!")
progress_placeholder.empty()
else:
progress_placeholder.empty()
st.error("Could not transcribe the audio. Please try speaking more clearly.")
# Clean up temp file
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
else:
progress_placeholder.empty()
st.error("Could not process the recording. Please try again.")
# Text input option
st.subheader("Manual Text Input")
st.write("If recording doesn't work, you can type your text here:")
manual_text = st.text_area("Enter text to analyze:", placeholder="Type what you want to analyze...")
analyze_text_button = st.button("Analyze Text", key="analyze_manual")
if analyze_text_button and manual_text:
with st.spinner("Analyzing text..."):
display_analysis_results(manual_text)
# Show model information
show_model_info()
# Add a small footer with version info
st.sidebar.markdown("---")
st.sidebar.caption("Voice Sentiment Analysis v2.0")
st.sidebar.caption("Optimized for speed and accuracy")
if __name__ == "__main__":
main() |