File size: 25,755 Bytes
3cf77dc 6d401a4 58b0884 6d401a4 3cf77dc 6d401a4 854f1c9 58b0884 69f4947 d8a1b1b 69f4947 3cf77dc 854f1c9 3cf77dc 6d401a4 69f4947 854f1c9 d8a1b1b 3cf77dc 9e1cb2f 3cf77dc 854f1c9 1949646 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 d8a1b1b 854f1c9 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 1949646 9e1cb2f 854f1c9 42d828e d8a1b1b 9e1cb2f 3cf77dc 854f1c9 9e1cb2f 854f1c9 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 42d828e 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 854f1c9 d8a1b1b 9e1cb2f 58b0884 3cf77dc 58b0884 9e1cb2f 3cf77dc d8a1b1b 854f1c9 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 d8a1b1b 9e1cb2f 3cf77dc 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f d8a1b1b 3cf77dc d8a1b1b 9e1cb2f 6d401a4 854f1c9 d8a1b1b 9e1cb2f 854f1c9 6d401a4 1949646 9e1cb2f 6d401a4 d8a1b1b 854f1c9 d8a1b1b 854f1c9 9e1cb2f 854f1c9 9e1cb2f d8a1b1b 3a51c3e 9e1cb2f d8a1b1b 854f1c9 9e1cb2f 854f1c9 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 6d401a4 d8a1b1b 6d401a4 d8a1b1b 9e1cb2f 854f1c9 9e1cb2f 58b0884 9e1cb2f d8a1b1b 9e1cb2f 3a51c3e 9e1cb2f 854f1c9 9e1cb2f 58b0884 d8a1b1b 9e1cb2f 58b0884 854f1c9 6d401a4 854f1c9 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 d8a1b1b 9e1cb2f 854f1c9 6d401a4 d8a1b1b 58b0884 d8a1b1b 58b0884 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 58b0884 9e1cb2f 58b0884 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 9e1cb2f 1cec378 58b0884 3cf77dc d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f 1cec378 9e1cb2f 6d401a4 9e1cb2f 854f1c9 1cec378 9e1cb2f 1cec378 d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f 1cec378 58b0884 69f4947 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 854f1c9 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 9e1cb2f 854f1c9 6d401a4 d8a1b1b 9e1cb2f d8a1b1b 3cf77dc 1cec378 9e1cb2f d8a1b1b 1cec378 9e1cb2f 58b0884 1cec378 d8a1b1b 9e1cb2f 58b0884 1cec378 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 1cec378 854f1c9 9e1cb2f d8a1b1b 1cec378 9e1cb2f 1cec378 d8a1b1b 9e1cb2f d8a1b1b 1cec378 d8a1b1b 1cec378 d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f 1cec378 d8a1b1b 9e1cb2f d8a1b1b 9e1cb2f 854f1c9 9e1cb2f d8a1b1b 9e1cb2f 6d401a4 3448878 854f1c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import os
import streamlit as st
import tempfile
import torch
import transformers
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import plotly.express as px
import logging
import warnings
import whisper
from pydub import AudioSegment
import time
import base64
import io
import streamlit.components.v1 as components
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, Tuple, List, Any, Optional, Union
import numpy as np
# Suppress warnings for a clean console
logging.getLogger("torch").setLevel(logging.CRITICAL)
logging.getLogger("transformers").setLevel(logging.CRITICAL)
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Check if NumPy is available
try:
test_array = np.array([1, 2, 3])
torch.from_numpy(test_array)
except Exception as e:
st.error(f"NumPy is not available or incompatible with PyTorch: {str(e)}. Ensure 'numpy' is in requirements.txt and reinstall dependencies.")
st.stop()
# Check if CUDA is available, otherwise use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Set Streamlit app layout
st.set_page_config(layout="wide", page_title="Voice Based Sentiment Analysis")
# Interface design
st.title("π Voice Based Sentiment Analysis")
st.write("Detect emotions, sentiment, and sarcasm from your voice with fast and accurate processing.")
# Emotion Detection Function with optimizations
@st.cache_resource
def get_emotion_classifier():
try:
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion",
use_fast=True,
model_max_length=512)
model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
model = model.to(device)
model.eval()
classifier = pipeline("text-classification",
model=model,
tokenizer=tokenizer,
return_all_scores=True,
device=0 if torch.cuda.is_available() else -1)
# Test the model
test_result = classifier("I am happy today")
print(f"Emotion classifier test: {test_result}")
return classifier
except Exception as e:
print(f"Error loading emotion model: {str(e)}")
st.error(f"Failed to load emotion model. Please check logs.")
return None
# Cache emotion results
@st.cache_data(ttl=600)
def perform_emotion_detection(text: str) -> Tuple[Dict[str, float], str, Dict[str, str], str]:
try:
if not text or len(text.strip()) < 3:
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
emotion_classifier = get_emotion_classifier()
if emotion_classifier is None:
st.error("Emotion classifier not available.")
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
# Process text directly (skip chunking for speed)
emotion_results = emotion_classifier(text)
emotion_map = {
"joy": "π", "anger": "π‘", "disgust": "π€’", "fear": "π¨",
"sadness": "π", "surprise": "π²", "neutral": "π"
}
positive_emotions = ["joy"]
negative_emotions = ["anger", "disgust", "fear", "sadness"]
neutral_emotions = ["surprise", "neutral"]
# Process results
emotions_dict = {emotion['label']: emotion['score'] for emotion in emotion_results[0]}
# Filter emotions with a lower threshold
filtered_emotions = {k: v for k, v in emotions_dict.items() if v > 0.01} # Lowered from 0.05
if not filtered_emotions:
filtered_emotions = emotions_dict
# Check for mixed emotions
sorted_emotions = sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)
if len(sorted_emotions) > 1 and sorted_emotions[1][1] > 0.8 * sorted_emotions[0][1]:
top_emotion = "MIXED"
else:
top_emotion = sorted_emotions[0][0]
# Determine sentiment
if top_emotion == "MIXED":
sentiment = "MIXED"
elif top_emotion in positive_emotions:
sentiment = "POSITIVE"
elif top_emotion in negative_emotions:
sentiment = "NEGATIVE"
else:
sentiment = "NEUTRAL"
return emotions_dict, top_emotion, emotion_map, sentiment
except Exception as e:
st.error(f"Emotion detection failed: {str(e)}")
print(f"Exception in emotion detection: {str(e)}")
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
# Sarcasm Detection Function
@st.cache_resource
def get_sarcasm_classifier():
try:
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony",
use_fast=True,
model_max_length=512)
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
model = model.to(device)
model.eval()
classifier = pipeline("text-classification",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1)
# Test the model
test_result = classifier("This is totally amazing")
print(f"Sarcasm classifier test: {test_result}")
return classifier
except Exception as e:
print(f"Error loading sarcasm model: {str(e)}")
st.error(f"Failed to load sarcasm model. Please check logs.")
return None
@st.cache_data(ttl=600)
def perform_sarcasm_detection(text: str) -> Tuple[bool, float]:
try:
if not text or len(text.strip()) < 3:
return False, 0.0
sarcasm_classifier = get_sarcasm_classifier()
if sarcasm_classifier is None:
st.error("Sarcasm classifier not available.")
return False, 0.0
result = sarcasm_classifier(text)[0]
is_sarcastic = result['label'] == "LABEL_1"
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
return is_sarcastic, sarcasm_score
except Exception as e:
st.error(f"Sarcasm detection failed: {str(e)}")
return False, 0.0
# Validate audio quality (streamlined for speed)
def validate_audio(audio_path: str) -> bool:
try:
sound = AudioSegment.from_file(audio_path)
if len(sound) < 300: # Relaxed to 0.3s
st.warning("Audio is very short. Longer audio provides better analysis.")
return False
return True
except Exception as e:
st.error(f"Invalid or corrupted audio file: {str(e)}")
return False
# Speech Recognition with Whisper
@st.cache_resource
def load_whisper_model():
try:
model = whisper.load_model("base") # Fastest model for quick transcription
return model
except Exception as e:
print(f"Error loading Whisper model: {str(e)}")
st.error(f"Failed to load Whisper model. Please check logs.")
return None
@st.cache_data
def transcribe_audio(audio_path: str) -> str:
try:
sound = AudioSegment.from_file(audio_path)
# Convert to WAV format (16kHz, mono) for Whisper
temp_wav_path = os.path.join(tempfile.gettempdir(), f"temp_converted_{int(time.time())}.wav")
sound = sound.set_frame_rate(16000).set_channels(1)
sound.export(temp_wav_path, format="wav")
# Load model
model = load_whisper_model()
if model is None:
return ""
# Transcribe with optimized settings
result = model.transcribe(
temp_wav_path,
language="en",
task="transcribe",
fp16=torch.cuda.is_available(),
beam_size=3 # Reduced for speed
)
main_text = result["text"].strip()
# Clean up
if os.path.exists(temp_wav_path):
os.remove(temp_wav_path)
return main_text
except Exception as e:
st.error(f"Transcription failed: {str(e)}")
return ""
# Process uploaded audio files
def process_uploaded_audio(audio_file) -> Optional[str]:
if not audio_file:
return None
try:
temp_dir = tempfile.gettempdir()
ext = audio_file.name.split('.')[-1].lower() if '.' in audio_file.name else ''
if ext not in ['wav', 'mp3', 'ogg', 'm4a', 'flac']:
st.error("Unsupported audio format. Please upload WAV, MP3, OGG, M4A, or FLAC.")
return None
temp_file_path = os.path.join(temp_dir, f"uploaded_audio_{int(time.time())}.{ext}")
with open(temp_file_path, "wb") as f:
f.write(audio_file.getvalue())
if not validate_audio(temp_file_path):
st.warning("Audio may not be optimal, but we'll try to process it.")
return temp_file_path
except Exception as e:
st.error(f"Error processing uploaded audio: {str(e)}")
return None
# Show model information
def show_model_info():
st.sidebar.header("π§ About the Models")
model_tabs = st.sidebar.tabs(["Emotion", "Sarcasm", "Speech"])
with model_tabs[0]:
st.markdown("""
*Emotion Model*: distilbert-base-uncased-emotion
- Detects joy, anger, disgust, fear, sadness, surprise
- Architecture: DistilBERT base
[π Model Hub](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
""")
with model_tabs[1]:
st.markdown("""
*Sarcasm Model*: cardiffnlp/twitter-roberta-base-irony
- Trained on Twitter irony dataset
- Architecture: RoBERTa base
[π Model Hub](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony)
""")
with model_tabs[2]:
st.markdown("""
*Speech Recognition*: OpenAI Whisper (base model)
- Optimized for speed
- Handles varied accents
*Tips*: Use good mic, reduce noise
[π Model Details](https://github.com/openai/whisper)
""")
# Custom audio recorder
def custom_audio_recorder():
st.warning("Browser-based recording requires microphone access. If recording fails, try uploading an audio file.")
audio_recorder_html = """
<script>
var audioRecorder = {
audioBlobs: [],
mediaRecorder: null,
streamBeingCaptured: null,
isRecording: false,
start: function() {
if (!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia)) {
document.getElementById('status-message').textContent = "Recording not supported";
return Promise.reject(new Error('mediaDevices API not supported'));
}
return navigator.mediaDevices.getUserMedia({
audio: {
echoCancellation: true,
noiseSuppression: true,
autoGainControl: true
}
})
.then(stream => {
audioRecorder.streamBeingCaptured = stream;
audioRecorder.mediaRecorder = new MediaRecorder(stream, {
mimeType: 'audio/webm;codecs=opus',
audioBitsPerSecond: 128000
});
audioRecorder.audioBlobs = [];
audioRecorder.mediaRecorder.addEventListener("dataavailable", event => {
audioRecorder.audioBlobs.push(event.data);
});
audioRecorder.mediaRecorder.start(100);
audioRecorder.isRecording = true;
document.getElementById('status-message').textContent = "Recording...";
});
},
stop: function() {
return new Promise(resolve => {
let mimeType = audioRecorder.mediaRecorder.mimeType;
audioRecorder.mediaRecorder.addEventListener("stop", () => {
let audioBlob = new Blob(audioRecorder.audioBlobs, { type: mimeType });
resolve(audioBlob);
audioRecorder.isRecording = false;
document.getElementById('status-message').textContent = "Recording stopped";
});
audioRecorder.mediaRecorder.stop();
audioRecorder.streamBeingCaptured.getTracks().forEach(track => track.stop());
audioRecorder.mediaRecorder = null;
audioRecorder.streamBeingCaptured = null;
});
}
}
var isRecording = false;
function toggleRecording() {
var recordButton = document.getElementById('record-button');
var statusMessage = document.getElementById('status-message');
if (!isRecording) {
audioRecorder.start()
.then(() => {
isRecording = true;
recordButton.textContent = 'Stop Recording';
recordButton.classList.add('recording');
})
.catch(error => {
statusMessage.textContent = 'Error: ' + error.message;
});
} else {
audioRecorder.stop()
.then(audioBlob => {
const audioUrl = URL.createObjectURL(audioBlob);
var audioElement = document.getElementById('audio-playback');
audioElement.src = audioUrl;
audioElement.style.display = 'block';
const reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = function() {
const base64data = reader.result;
var audioData = document.getElementById('audio-data');
audioData.value = base64data;
const streamlitMessage = {type: "streamlit:setComponentValue", value: base64data};
window.parent.postMessage(streamlitMessage, "*");
}
isRecording = false;
recordButton.textContent = 'Start Recording';
recordButton.classList.remove('recording');
});
}
}
document.addEventListener('DOMContentLoaded', function() {
var recordButton = document.getElementById('record-button');
recordButton.addEventListener('click', toggleRecording);
});
</script>
<div class="audio-recorder-container">
<button id="record-button" class="record-button">Start Recording</button>
<div id="status-message" class="status-message">Ready to record</div>
<audio id="audio-playback" controls style="display:none; margin-top:10px; width:100%;"></audio>
<input type="hidden" id="audio-data" name="audio-data">
</div>
<style>
.audio-recorder-container {
display: flex;
flex-direction: column;
align-items: center;
padding: 15px;
border-radius: 8px;
background-color: #f7f7f7;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.record-button {
background-color: #f63366;
color: white;
border: none;
padding: 12px 24px;
border-radius: 24px;
cursor: pointer;
font-size: 16px;
font-weight: bold;
transition: all 0.3s ease;
}
.record-button:hover {
background-color: #e62958;
transform: translateY(-2px);
}
.record-button.recording {
background-color: #ff0000;
animation: pulse 1.5s infinite;
}
.status-message {
margin-top: 10px;
font-size: 14px;
color: #666;
}
@keyframes pulse {
0% { opacity: 1; box-shadow: 0 0 0 0 rgba(255,0,0,0.7); }
50% { opacity: 0.8; box-shadow: 0 0 0 10px rgba(255,0,0,0); }
100% { opacity: 1; box-shadow: 0 0 0 0 rgba(255,0,0,0); }
}
</style>
"""
return components.html(audio_recorder_html, height=150)
# Display analysis results
def display_analysis_results(transcribed_text, emotions_dict, top_emotion, emotion_map, sentiment, is_sarcastic, sarcasm_score):
st.session_state.debug_info = st.session_state.get('debug_info', [])
st.session_state.debug_info.append(f"Text: {transcribed_text[:50]}...")
st.session_state.debug_info.append(f"Top emotion: {top_emotion}, Sentiment: {sentiment}, Sarcasm: {is_sarcastic}")
st.session_state.debug_info = st.session_state.debug_info[-100:]
st.header("Transcribed Text")
st.text_area("Text", transcribed_text, height=100, disabled=True)
# Confidence estimation
word_count = len(transcribed_text.split())
confidence_score = min(0.98, max(0.75, 0.75 + (word_count / 100) * 0.2))
st.caption(f"Estimated transcription confidence: {confidence_score:.2f}")
st.header("Analysis Results")
col1, col2 = st.columns([1, 2])
with col1:
st.subheader("Sentiment")
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π" if sentiment == "MIXED" else "π"
st.markdown(f"**{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
st.subheader("Sarcasm")
sarcasm_icon = "π" if is_sarcastic else "π"
sarcasm_text = "Detected" if is_sarcastic else "Not Detected"
st.markdown(f"**{sarcasm_icon} {sarcasm_text}** (Score: {sarcasm_score:.3f})")
with col2:
st.subheader("Emotions")
if emotions_dict:
st.markdown(f"*Dominant:* {emotion_map.get(top_emotion, 'β')} {top_emotion.capitalize()} (Score: {emotions_dict[top_emotion]:.3f})")
sorted_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)
significant_emotions = [(e, s) for e, s in sorted_emotions if s > 0.01]
if significant_emotions:
emotions = [e[0] for e in significant_emotions]
scores = [e[1] for e in significant_emotions]
fig = px.bar(x=emotions, y=scores, labels={'x': 'Emotion', 'y': 'Score'},
title="Emotion Distribution", color=emotions,
color_discrete_sequence=px.colors.qualitative.Bold)
fig.update_layout(yaxis_range=[0, 1], showlegend=False, title_font_size=14,
margin=dict(l=20, r=20, t=40, b=20), bargap=0.3)
st.plotly_chart(fig, use_container_width=True)
else:
st.write("No significant emotions detected.")
else:
st.write("No emotions detected.")
# Debug expander
with st.expander("Debug Information", expanded=False):
st.write("Debugging information:")
for i, debug_line in enumerate(st.session_state.debug_info[-10:]):
st.text(f"{i + 1}. {debug_line}")
if emotions_dict:
st.write("Raw emotion scores:")
for emotion, score in sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True):
if score > 0.01:
st.text(f"{emotion}: {score:.4f}")
# Process base64 audio data
def process_base64_audio(base64_data):
try:
if not base64_data or not isinstance(base64_data, str) or not base64_data.startswith('data:'):
st.error("Invalid audio data received")
return None
base64_binary = base64_data.split(',')[1]
binary_data = base64.b64decode(base64_binary)
temp_file_path = os.path.join(tempfile.gettempdir(), f"recording_{int(time.time())}.wav")
with open(temp_file_path, "wb") as f:
f.write(binary_data)
if not validate_audio(temp_file_path):
st.warning("Audio quality may not be optimal, but we'll try to process it.")
return temp_file_path
except Exception as e:
st.error(f"Error processing audio data: {str(e)}")
return None
# Preload models in background
def preload_models():
threading.Thread(target=load_whisper_model).start()
threading.Thread(target=get_emotion_classifier).start()
threading.Thread(target=get_sarcasm_classifier).start()
# Main App Logic
def main():
if 'debug_info' not in st.session_state:
st.session_state.debug_info = []
if 'models_loaded' not in st.session_state:
st.session_state.models_loaded = False
if not st.session_state.models_loaded:
preload_models()
st.session_state.models_loaded = True
tab1, tab2 = st.tabs(["π Upload Audio", "π Record Audio"])
with tab1:
st.header("Upload an Audio File")
audio_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg", "m4a", "flac"])
if audio_file:
st.audio(audio_file.getvalue())
upload_button = st.button("Analyze Upload", key="analyze_upload")
if upload_button:
progress_bar = st.progress(0, text="Preparing audio...")
temp_audio_path = process_uploaded_audio(audio_file)
if temp_audio_path:
progress_bar.progress(25, text="Processing in parallel...")
with ThreadPoolExecutor(max_workers=3) as executor:
transcribe_future = executor.submit(transcribe_audio, temp_audio_path)
emotion_future = executor.submit(perform_emotion_detection, transcribe_future.result())
sarcasm_future = executor.submit(perform_sarcasm_detection, transcribe_future.result())
transcribed_text = transcribe_future.result()
emotions_dict, top_emotion, emotion_map, sentiment = emotion_future.result()
is_sarcastic, sarcasm_score = sarcasm_future.result()
progress_bar.progress(90, text="Finalizing results...")
if transcribed_text:
display_analysis_results(transcribed_text, emotions_dict, top_emotion, emotion_map, sentiment, is_sarcastic, sarcasm_score)
else:
st.error("Could not transcribe the audio. Try clearer audio.")
progress_bar.progress(100, text="Analysis complete!")
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
else:
st.error("Could not process the audio file.")
with tab2:
st.header("Record Your Voice")
audio_data = custom_audio_recorder()
if audio_data:
analyze_rec_button = st.button("Analyze Recording", key="analyze_rec")
if analyze_rec_button:
progress_bar = st.progress(0, text="Processing recording...")
temp_audio_path = process_base64_audio(audio_data)
if temp_audio_path:
progress_bar.progress(30, text="Processing in parallel...")
with ThreadPoolExecutor(max_workers=3) as executor:
transcribe_future = executor.submit(transcribe_audio, temp_audio_path)
emotion_future = executor.submit(perform_emotion_detection, transcribe_future.result())
sarcasm_future = executor.submit(perform_sarcasm_detection, transcribe_future.result())
transcribed_text = transcribe_future.result()
emotions_dict, top_emotion, emotion_map, sentiment = emotion_future.result()
is_sarcastic, sarcasm_score = sarcasm_future.result()
progress_bar.progress(90, text="Finalizing results...")
if transcribed_text:
display_analysis_results(transcribed_text, emotions_dict, top_emotion, emotion_map, sentiment, is_sarcastic, sarcasm_score)
else:
st.error("Could not transcribe the audio. Speak clearly.")
progress_bar.progress(100, text="Analysis complete!")
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
else:
st.error("Could not process the recording.")
st.subheader("Manual Text Input")
manual_text = st.text_area("Enter text to analyze:", placeholder="Type text to analyze...")
analyze_text_button = st.button("Analyze Text", key="analyze_manual")
if analyze_text_button and manual_text:
with ThreadPoolExecutor(max_workers=2) as executor:
emotion_future = executor.submit(perform_emotion_detection, manual_text)
sarcasm_future = executor.submit(perform_sarcasm_detection, manual_text)
emotions_dict, top_emotion, emotion_map, sentiment = emotion_future.result()
is_sarcastic, sarcasm_score = sarcasm_future.result()
display_analysis_results(manual_text, emotions_dict, top_emotion, emotion_map, sentiment, is_sarcastic, sarcasm_score)
show_model_info()
st.sidebar.markdown("---")
st.sidebar.caption("Voice Sentiment Analysis v2.1")
st.sidebar.caption("Optimized for speed and accuracy")
if __name__ == "__main__":
main() |