Matt09Miao's picture
Update app.py
a716b14 verified
raw
history blame
743 Bytes
import streamlit as st
# Use a pipeline as a high-level helper
from transformers import pipeline
toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic")
st.set_page_config(page_title="Tweet Toxicity Analysis")
st.header("Please input your Tweet for Toxicity Analysis :performing_arts:")
input = st.text_area("Enter a Tweer for analysis")
result = toxic_model(input)
# Display the classification result
max_score = float('-inf')
max_label = ''
for result in results:
if result['score'] > max_score:
max_score = result['score']
max_label = result['label']
st.write("Tweet:", input)
st.write("Label:", max_label)
st.write("Score:", max_score)