Spaces:
Running
Running
File size: 10,793 Bytes
521c1f0 e4611cf 78af081 521c1f0 cd3a11d 78af081 521c1f0 cd3a11d 5b73cc5 78af081 f9b55bc 43bee1c 78af081 f9b55bc 78af081 f9b55bc e4611cf 521c1f0 cd3a11d 0f2aa55 cd3a11d 521c1f0 2ebf628 0f2aa55 521c1f0 0f2aa55 78af081 0f2aa55 cd3a11d 5b73cc5 0f2aa55 521c1f0 cd3a11d 0f2aa55 9e36f0e 521c1f0 9e36f0e cd3a11d 0f2aa55 9e36f0e cd3a11d 9e36f0e cd3a11d 78af081 cd3a11d f9b55bc 78af081 521c1f0 78af081 521c1f0 78af081 521c1f0 78af081 cd3a11d 521c1f0 7c08af8 2dfe626 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 521c1f0 7c08af8 2dfe626 7c08af8 521c1f0 7c08af8 521c1f0 7c08af8 78af081 521c1f0 2dfe626 78af081 521c1f0 2dfe626 78af081 521c1f0 78af081 521c1f0 78af081 521c1f0 7c08af8 521c1f0 7c08af8 78af081 521c1f0 78af081 521c1f0 7c08af8 521c1f0 cd3a11d 78af081 521c1f0 cd3a11d 521c1f0 78af081 521c1f0 78af081 521c1f0 cd3a11d 78af081 686ef17 f9b55bc 5b73cc5 78af081 f9b55bc 7c08af8 f9b55bc 0f2aa55 9e36f0e 0f2aa55 521c1f0 0f2aa55 7c08af8 521c1f0 78af081 7c08af8 0f2aa55 521c1f0 0f2aa55 521c1f0 5b73cc5 78af081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import os
import io
import time
import base64
import logging
import fitz # PyMuPDF
from PIL import Image
import gradio as gr
from openai import OpenAI # Use the OpenAI client that supports multimodal messages
# Load API key from environment variable (secrets)
HF_API_KEY = os.getenv("OPENAI_TOKEN")
if not HF_API_KEY:
raise ValueError("HF_API_KEY environment variable not set")
# Create the client pointing to the Hugging Face Inference endpoint
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=HF_API_KEY
)
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# -------------------------------
# Document State and File Processing
# -------------------------------
class DocumentState:
def __init__(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
def clear(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
doc_state = DocumentState()
def process_pdf_file(file_path):
"""Convert PDF pages to images and extract text using PyMuPDF."""
try:
doc = fitz.open(file_path)
images = []
text = ""
for page_num in range(doc.page_count):
try:
page = doc[page_num]
page_text = page.get_text("text")
if page_text.strip():
text += f"Page {page_num + 1}:\n{page_text}\n\n"
# Render page as an image with a zoom factor
zoom = 3
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, alpha=False)
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data)).convert("RGB")
# Resize if image is too large
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
images.append(img)
except Exception as e:
logger.error(f"Error processing page {page_num}: {str(e)}")
continue
doc.close()
if not images:
raise ValueError("No valid images could be extracted from the PDF")
return images, text
except Exception as e:
logger.error(f"Error processing PDF file: {str(e)}")
raise
def process_uploaded_file(file):
"""Process an uploaded file (PDF or image) and update document state."""
try:
doc_state.clear()
if file is None:
return "No file uploaded. Please upload a file."
# Get the file path from the Gradio upload (may be a dict or file-like object)
if isinstance(file, dict):
file_path = file["name"]
else:
file_path = file.name
file_ext = file_path.lower().split('.')[-1]
image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'}
if file_ext == 'pdf':
doc_state.doc_type = 'pdf'
try:
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
except Exception as e:
return f"Error processing PDF: {str(e)}. Please try a different PDF file."
elif file_ext in image_extensions:
doc_state.doc_type = 'image'
try:
img = Image.open(file_path).convert("RGB")
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
doc_state.current_doc_images = [img]
return "Image loaded successfully. You can now ask questions about the content."
except Exception as e:
return f"Error processing image: {str(e)}. Please try a different image file."
else:
return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)."
except Exception as e:
logger.error(f"Error in process_uploaded_file: {str(e)}")
return "An error occurred while processing the file. Please try again."
# -------------------------------
# Bot Streaming Function Using the Multimodal API
# -------------------------------
def bot_streaming(prompt_option, max_new_tokens=500):
"""
Build a multimodal message payload and call the inference API.
The payload includes:
- A text segment (the selected prompt and any document context).
- If available, an image as a data URI (using a base64-encoded PNG).
"""
try:
# Predetermined prompts (you can adjust these as needed)
prompts = {
"NOC Timesheet": (
"""Extract structured information from the provided timesheet. The extracted details should include:
Name
Position Title
Work Location
Contractor
NOC ID
Month and Year
Regular Service Days (ONSHORE)
Standby Days (ONSHORE in Doha)
Offshore Days
Standby & Extended Hitch Days (OFFSHORE)
Extended Hitch Days (ONSHORE Rotational)
Service during Weekends & Public Holidays
ONSHORE Overtime Hours (Over 8 hours)
OFFSHORE Overtime Hours (Over 12 hours)
Per Diem Days (ONSHORE/OFFSHORE Rotational Personnel)
Training Days
Travel Days
Noc representative appoval's name as approved_by
Noc representative's date approval_date
Noc representative status as approval_status
Format the output as valid JSON.
"""
),
"NOC Basic": (
"Based on the provided timesheet details, extract the following information:\n"
" - Full name\n"
" - Position title\n"
" - Work location\n"
" - Contractor's name\n"
" - NOC ID\n"
" - Month and year (MM/YYYY)"
),
"Aramco Full structured": (
"""You are a document parsing assistant designed to extract structured data from various documents such as invoices, timesheets, purchase orders, and travel bookings. Return only valid JSON with no extra text.
"""
),
"Aramco Timesheet only": (
"""Extract time tracking, work details, and approvals.
Return a JSON object following the specified structure.
"""
),
"NOC Invoice": (
"""You are a highly accurate data extraction system. Analyze the provided invoice image and extract all data into the following JSON format:
{
"invoiceDetails": { ... },
"from": { ... },
"to": { ... },
"services": [ ... ],
"totals": { ... },
"bankDetails": { ... }
}
"""
)
}
# Select the appropriate prompt
selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
context = ""
if doc_state.current_doc_images and doc_state.current_doc_text:
context = "\nDocument context:\n" + doc_state.current_doc_text
full_prompt = selected_prompt + context
# Build the message payload in the expected format.
# The content field is a list of objects—one for text, and (if an image is available) one for the image.
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": full_prompt
}
]
}
]
# If an image is available, encode it as a data URI and append it as an image_url message.
if doc_state.current_doc_images:
buffered = io.BytesIO()
doc_state.current_doc_images[0].save(buffered, format="PNG")
img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Create a data URI (many APIs accept this format in place of a public URL)
data_uri = f"data:image/png;base64,{img_b64}"
messages[0]["content"].append({
"type": "image_url",
"image_url": {"url": data_uri}
})
# Call the inference API with streaming enabled.
stream = client.chat.completions.create(
model="qwen/qwen2.5-vl-72b-instruct:free",
messages=messages,
max_tokens=max_new_tokens,
stream=True
)
buffer = ""
for chunk in stream:
# The response structure is similar to the reference: each chunk contains a delta.
delta = chunk.choices[0].delta.content
buffer += delta
time.sleep(0.01)
yield buffer
except Exception as e:
logger.error(f"Error in bot_streaming: {str(e)}")
yield "An error occurred while processing your request. Please try again."
def clear_context():
"""Clear the current document context."""
doc_state.clear()
return "Document context cleared. You can upload a new document."
# -------------------------------
# Create the Gradio Interface
# -------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Document Analyzer with Predetermined Prompts")
gr.Markdown("Upload a PDF or image (PNG, JPG, JPEG, GIF, BMP, WEBP) and select a prompt to analyze its contents.")
with gr.Row():
file_upload = gr.File(
label="Upload Document",
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
)
upload_status = gr.Textbox(label="Upload Status", interactive=False)
with gr.Row():
prompt_dropdown = gr.Dropdown(
label="Select Prompt",
choices=["NOC Timesheet", "NOC Basic", "Aramco Full structured", "Aramco Timesheet only", "NOC Invoice"],
value="NOC Timesheet"
)
generate_btn = gr.Button("Generate")
clear_btn = gr.Button("Clear Document Context")
output_text = gr.Textbox(label="Output", interactive=False)
file_upload.change(fn=process_uploaded_file, inputs=[file_upload], outputs=[upload_status])
generate_btn.click(fn=bot_streaming, inputs=[prompt_dropdown], outputs=[output_text])
clear_btn.click(fn=clear_context, outputs=[upload_status])
demo.launch(debug=True)
|