File size: 10,793 Bytes
521c1f0
e4611cf
78af081
521c1f0
cd3a11d
78af081
 
 
521c1f0
 
 
 
 
 
 
 
 
 
 
 
cd3a11d
 
 
 
5b73cc5
78af081
 
 
f9b55bc
 
 
 
43bee1c
78af081
f9b55bc
 
 
 
78af081
f9b55bc
 
e4611cf
521c1f0
cd3a11d
 
 
 
 
 
 
 
0f2aa55
cd3a11d
 
521c1f0
2ebf628
0f2aa55
 
 
521c1f0
0f2aa55
78af081
0f2aa55
 
 
 
 
 
cd3a11d
 
 
 
 
 
 
 
 
 
5b73cc5
0f2aa55
521c1f0
cd3a11d
 
0f2aa55
 
9e36f0e
521c1f0
9e36f0e
 
 
 
 
 
 
 
cd3a11d
 
 
 
 
0f2aa55
9e36f0e
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
9e36f0e
 
cd3a11d
78af081
cd3a11d
f9b55bc
78af081
521c1f0
78af081
521c1f0
78af081
521c1f0
 
 
 
78af081
cd3a11d
521c1f0
7c08af8
2dfe626
c6ee6e7
 
 
 
 
 
 
 
b956b25
c6ee6e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b956b25
c6ee6e7
b956b25
c6ee6e7
b956b25
c6ee6e7
521c1f0
 
7c08af8
2dfe626
7c08af8
521c1f0
 
7c08af8
 
 
521c1f0
7c08af8
78af081
521c1f0
 
2dfe626
78af081
 
521c1f0
 
2dfe626
78af081
521c1f0
78af081
521c1f0
 
 
 
 
 
78af081
521c1f0
7c08af8
 
 
521c1f0
7c08af8
78af081
521c1f0
 
78af081
521c1f0
 
 
 
 
 
 
 
 
 
 
 
 
 
7c08af8
521c1f0
cd3a11d
78af081
 
521c1f0
 
 
 
 
 
 
cd3a11d
521c1f0
 
78af081
 
 
521c1f0
78af081
 
 
521c1f0
 
 
 
 
 
 
cd3a11d
 
78af081
686ef17
f9b55bc
 
 
 
5b73cc5
78af081
 
 
f9b55bc
7c08af8
 
f9b55bc
0f2aa55
 
9e36f0e
 
0f2aa55
521c1f0
0f2aa55
7c08af8
 
 
521c1f0
78af081
7c08af8
 
 
0f2aa55
521c1f0
0f2aa55
521c1f0
 
 
5b73cc5
78af081
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import io
import time
import base64
import logging
import fitz  # PyMuPDF
from PIL import Image
import gradio as gr
from openai import OpenAI  # Use the OpenAI client that supports multimodal messages

# Load API key from environment variable (secrets)
HF_API_KEY = os.getenv("OPENAI_TOKEN")
if not HF_API_KEY:
    raise ValueError("HF_API_KEY environment variable not set")

# Create the client pointing to the Hugging Face Inference endpoint
client = OpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=HF_API_KEY
)

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# -------------------------------
# Document State and File Processing
# -------------------------------
class DocumentState:
    def __init__(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None

    def clear(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None

doc_state = DocumentState()

def process_pdf_file(file_path):
    """Convert PDF pages to images and extract text using PyMuPDF."""
    try:
        doc = fitz.open(file_path)
        images = []
        text = ""
        for page_num in range(doc.page_count):
            try:
                page = doc[page_num]
                page_text = page.get_text("text")
                if page_text.strip():
                    text += f"Page {page_num + 1}:\n{page_text}\n\n"
                
                # Render page as an image with a zoom factor
                zoom = 3
                mat = fitz.Matrix(zoom, zoom)
                pix = page.get_pixmap(matrix=mat, alpha=False)
                img_data = pix.tobytes("png")
                img = Image.open(io.BytesIO(img_data)).convert("RGB")
                
                # Resize if image is too large
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                images.append(img)
            except Exception as e:
                logger.error(f"Error processing page {page_num}: {str(e)}")
                continue
        doc.close()
        if not images:
            raise ValueError("No valid images could be extracted from the PDF")
        return images, text
    except Exception as e:
        logger.error(f"Error processing PDF file: {str(e)}")
        raise

def process_uploaded_file(file):
    """Process an uploaded file (PDF or image) and update document state."""
    try:
        doc_state.clear()
        if file is None:
            return "No file uploaded. Please upload a file."
        
        # Get the file path from the Gradio upload (may be a dict or file-like object)
        if isinstance(file, dict):
            file_path = file["name"]
        else:
            file_path = file.name
        file_ext = file_path.lower().split('.')[-1]
        image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'}
        
        if file_ext == 'pdf':
            doc_state.doc_type = 'pdf'
            try:
                doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
                return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
            except Exception as e:
                return f"Error processing PDF: {str(e)}. Please try a different PDF file."
        elif file_ext in image_extensions:
            doc_state.doc_type = 'image'
            try:
                img = Image.open(file_path).convert("RGB")
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                doc_state.current_doc_images = [img]
                return "Image loaded successfully. You can now ask questions about the content."
            except Exception as e:
                return f"Error processing image: {str(e)}. Please try a different image file."
        else:
            return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)."
    except Exception as e:
        logger.error(f"Error in process_uploaded_file: {str(e)}")
        return "An error occurred while processing the file. Please try again."

# -------------------------------
# Bot Streaming Function Using the Multimodal API
# -------------------------------
def bot_streaming(prompt_option, max_new_tokens=500):
    """
    Build a multimodal message payload and call the inference API.
    The payload includes:
      - A text segment (the selected prompt and any document context).
      - If available, an image as a data URI (using a base64-encoded PNG).
    """
    try:
        # Predetermined prompts (you can adjust these as needed)
        prompts = {
            "NOC Timesheet": (
                """Extract structured information from the provided timesheet. The extracted details should include:

Name

Position Title

Work Location

Contractor 

NOC ID

Month and Year

Regular Service Days (ONSHORE)

Standby Days (ONSHORE in Doha)

Offshore Days

Standby & Extended Hitch Days (OFFSHORE)

Extended Hitch Days (ONSHORE Rotational)

Service during Weekends & Public Holidays

ONSHORE Overtime Hours (Over 8 hours)

OFFSHORE Overtime Hours (Over 12 hours)

Per Diem Days (ONSHORE/OFFSHORE Rotational Personnel)

Training Days

Travel Days

Noc representative appoval's name as approved_by

Noc representative's date approval_date

Noc representative status as approval_status

Format the output as valid JSON.
                """
            ),
            "NOC Basic": (
                "Based on the provided timesheet details, extract the following information:\n"
                "   - Full name\n"
                "   - Position title\n"
                "   - Work location\n"
                "   - Contractor's name\n"
                "   - NOC ID\n"
                "   - Month and year (MM/YYYY)"
            ),
            "Aramco Full structured": (
                """You are a document parsing assistant designed to extract structured data from various documents such as invoices, timesheets, purchase orders, and travel bookings. Return only valid JSON with no extra text.
                """
            ),
            "Aramco Timesheet only": (
                """Extract time tracking, work details, and approvals.
Return a JSON object following the specified structure.
                """
            ),
            "NOC Invoice": (
                """You are a highly accurate data extraction system. Analyze the provided invoice image and extract all data into the following JSON format:
{
  "invoiceDetails": { ... },
  "from": { ... },
  "to": { ... },
  "services": [ ... ],
  "totals": { ... },
  "bankDetails": { ... }
}
                """
            )
        }
        
        # Select the appropriate prompt
        selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
        context = ""
        if doc_state.current_doc_images and doc_state.current_doc_text:
            context = "\nDocument context:\n" + doc_state.current_doc_text
        full_prompt = selected_prompt + context

        # Build the message payload in the expected format.
        # The content field is a list of objects—one for text, and (if an image is available) one for the image.
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": full_prompt
                    }
                ]
            }
        ]
        
        # If an image is available, encode it as a data URI and append it as an image_url message.
        if doc_state.current_doc_images:
            buffered = io.BytesIO()
            doc_state.current_doc_images[0].save(buffered, format="PNG")
            img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
            # Create a data URI (many APIs accept this format in place of a public URL)
            data_uri = f"data:image/png;base64,{img_b64}"
            messages[0]["content"].append({
                "type": "image_url",
                "image_url": {"url": data_uri}
            })
        
        # Call the inference API with streaming enabled.
        stream = client.chat.completions.create(
            model="qwen/qwen2.5-vl-72b-instruct:free",
            messages=messages,
            max_tokens=max_new_tokens,
            stream=True
        )
        
        buffer = ""
        for chunk in stream:
            # The response structure is similar to the reference: each chunk contains a delta.
            delta = chunk.choices[0].delta.content
            buffer += delta
            time.sleep(0.01)
            yield buffer

    except Exception as e:
        logger.error(f"Error in bot_streaming: {str(e)}")
        yield "An error occurred while processing your request. Please try again."

def clear_context():
    """Clear the current document context."""
    doc_state.clear()
    return "Document context cleared. You can upload a new document."

# -------------------------------
# Create the Gradio Interface
# -------------------------------
with gr.Blocks() as demo:
    gr.Markdown("# Document Analyzer with Predetermined Prompts")
    gr.Markdown("Upload a PDF or image (PNG, JPG, JPEG, GIF, BMP, WEBP) and select a prompt to analyze its contents.")
    
    with gr.Row():
        file_upload = gr.File(
            label="Upload Document",
            file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
        )
        upload_status = gr.Textbox(label="Upload Status", interactive=False)
    
    with gr.Row():
        prompt_dropdown = gr.Dropdown(
            label="Select Prompt",
            choices=["NOC Timesheet", "NOC Basic", "Aramco Full structured", "Aramco Timesheet only", "NOC Invoice"],
            value="NOC Timesheet"
        )
        generate_btn = gr.Button("Generate")
    
    clear_btn = gr.Button("Clear Document Context")
    output_text = gr.Textbox(label="Output", interactive=False)
    
    file_upload.change(fn=process_uploaded_file, inputs=[file_upload], outputs=[upload_status])
    generate_btn.click(fn=bot_streaming, inputs=[prompt_dropdown], outputs=[output_text])
    clear_btn.click(fn=clear_context, outputs=[upload_status])

demo.launch(debug=True)