|
import gradio as gr |
|
import spacy |
|
from transformers import pipeline |
|
|
|
nlp = spacy.load('es_core_news_sm') |
|
text_generator = pipeline('text-generation', model='gpt2') |
|
|
|
def generate_sentence(): |
|
result = text_generator('')[0] |
|
sentence = result['generated_text'] |
|
return sentence |
|
|
|
def analyze_sentence(sentence): |
|
doc = nlp(sentence) |
|
tagged_words = [(token.text, token.pos_) for token in doc] |
|
return tagged_words |
|
|
|
def check_answer(sentence, answer): |
|
tagged_words = analyze_sentence(sentence) |
|
correct_answer = [tag for word, tag in tagged_words] |
|
if answer == correct_answer: |
|
return 'Correcto!' |
|
else: |
|
return 'Incorrecto. La respuesta correcta es: ' + str(correct_answer) |
|
|
|
sentence = generate_sentence() |
|
iface = gr.Interface(fn=check_answer, inputs=['text', 'list'], outputs='text') |
|
iface.launch() |
|
|