File size: 4,873 Bytes
8b91654
 
 
 
 
 
7853cf0
8b91654
 
 
 
 
 
 
 
 
 
 
 
 
7853cf0
fa69787
 
 
 
8b91654
 
 
 
 
 
 
 
 
7853cf0
31fe8a6
 
 
7853cf0
2fb5dff
 
 
 
 
 
 
84135ec
2fb5dff
 
 
 
 
7853cf0
0bb86ad
2fb5dff
 
 
84135ec
 
 
 
2fb5dff
7853cf0
0bb86ad
2fb5dff
 
 
 
 
a05144a
 
2fb5dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7853cf0
2fb5dff
 
 
 
 
 
 
 
 
 
 
 
 
 
7853cf0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import fitz
import os

# Load the model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")

def extract_text_from_pdf(file_path):
    text = ''
    with fitz.open(file_path) as pdf_document:
        for page_number in range(pdf_document.page_count):
            page = pdf_document.load_page(page_number)
            text += page.get_text()
    return text

def predict_class(text):
    try:
        # Truncate text to maximum length of 4096 tokens
        max_length = 4096
        truncated_text = text[:max_length]

        inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits
            predicted_class = torch.argmax(logits, dim=1).item()
        return predicted_class
    except Exception as e:
        st.error(f"Error during prediction: {e}")
        return None

# Create a directory to store uploaded files
uploaded_files_dir = "uploaded_files"
os.makedirs(uploaded_files_dir, exist_ok=True)

# Define colors for different classes
class_colors = {
    0: "#1f77b4",  # Level 1
    1: "#ff7f0e",  # Level 2
    2: "#2ca02c",  # Level 3
    3: "#d62728"   # Level 4
}

st.set_page_config("Paper Citation Calssifier")
st.title("Paper Citation Classifier")

option = st.radio("Select input type:", ("Text", "PDF"))

if option == "Text":
    # Input text boxes for abstract, full text, and affiliations
    title_input = st.text_area("Enter Title:")
    abstract_input = st.text_area("Enter Abstract:")
    full_text_input = st.text_area("Enter Full Text:")
    affiliations_input = st.text_area("Enter Affiliations:")
    options=["Nursing", "Physics", "Maths", "Chemical", "Nuclear" ,"Other"]
    categories = pills("Select a category", options)
    
    # categories = st.multiselect("Select WoS categories:", ["Nursing", "Physics", "Maths", "Chemical", "Nuclear" ,"Other"])

    # Combine selected categories with [SEP]
    combined_text = f"{title_input} [SEP] {abstract_input} [SEP] {full_text_input} [SEP] {affiliations_input} [SEP] {' [SEP] '.join(categories)}"

    if st.button("Predict"):
        with st.spinner("Predicting..."):
            predicted_class = predict_class(combined_text)
            if predicted_class is not None:
                class_labels = ["Level 1 (Highly Cited Paper)", "Level 2 (Average Cited Paper)", "Level 3 (More Cited Paper)", "Level 4 (Low Cited Paper)"]

                st.text("Predicted Class:")
                for i, label in enumerate(class_labels):
                    if i == predicted_class:
                        st.markdown(
                            f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                            unsafe_allow_html=True
                        )
                    else:
                        st.text(label)

elif option == "PDF":
    uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])

    if uploaded_file is not None:
        with st.spinner("Processing PDF..."):
            file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
            with open(file_path, "wb") as f:
                f.write(uploaded_file.getbuffer())
            st.success("File uploaded successfully.")
            st.text(f"File Path: {file_path}")
            
            file_text = extract_text_from_pdf(file_path)
            st.text("Extracted Text:")
            st.text(file_text)

            # Provide an option to predict from PDF text
            if st.button("Predict from PDF Text"):
                with st.spinner("Predicting..."):
                    predicted_class = predict_class(file_text)
                    if predicted_class is not None:
                        class_labels = ["Level 1 (Highly Cited Paper)", "Level 2 (Average Cited Paper)", "Level 3 (More Cited Paper)", "Level 4 (Low Cited Paper)"]
                        st.text("Predicted Class:")
                        for i, label in enumerate(class_labels):
                            if i == predicted_class:
                                st.markdown(
                                    f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                    unsafe_allow_html=True
                                )
                            else:
                                st.text(label)