File size: 5,628 Bytes
1100e65 b09f327 249a3c0 b09f327 af532e7 7a13c00 1b493d6 a18a113 249a3c0 a18a113 249a3c0 b09f327 249a3c0 17ca647 b09f327 249a3c0 752e0a6 b0c825b 659b8b6 256795b b0c825b 256795b b0c825b 752e0a6 256795b b0c825b 752e0a6 b0c825b 0653992 256795b b0c825b 752e0a6 a18a113 0cfb05e af532e7 256795b af532e7 249a3c0 af532e7 249a3c0 0cfb05e 249a3c0 256795b 0cfb05e 249a3c0 b09f327 0cfb05e 256795b b09f327 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import io
import gradio as gr
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import requests
from bs4 import BeautifulSoup
import tempfile
import os
import soundfile as sf
from spellchecker import SpellChecker
from pydub import AudioSegment
import librosa
import numpy as np
# Check if CUDA is available and set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load the Whisper model and processor
model_name = "openai/whisper-small"
processor = WhisperProcessor.from_pretrained(model_name)
model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
spell = SpellChecker()
def download_audio_from_url(url):
try:
if "share" in url:
print("Processing shareable link...")
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
video_tag = soup.find('video')
if video_tag and 'src' in video_tag.attrs:
video_url = video_tag['src']
print(f"Extracted video URL: {video_url}")
else:
raise ValueError("Direct video URL not found in the shareable link.")
else:
video_url = url
print(f"Downloading video from URL: {video_url}")
response = requests.get(video_url)
audio_bytes = response.content
print(f"Successfully downloaded {len(audio_bytes)} bytes of data")
return audio_bytes
except Exception as e:
print(f"Error in download_audio_from_url: {str(e)}")
raise
def correct_spelling(text):
words = text.split()
corrected_words = [spell.correction(word) or word for word in words]
return ' '.join(corrected_words)
def format_transcript(transcript):
sentences = transcript.split('.')
formatted_transcript = []
current_speaker = None
for sentence in sentences:
if ':' in sentence:
speaker, content = sentence.split(':', 1)
if speaker != current_speaker:
formatted_transcript.append(f"\n\n{speaker.strip()}:{content.strip()}.")
current_speaker = speaker
else:
formatted_transcript.append(f"{content.strip()}.")
else:
formatted_transcript.append(sentence.strip() + '.')
return ' '.join(formatted_transcript)
def transcribe_audio(audio_file):
try:
# Load the entire audio file
audio_input, sr = librosa.load(audio_file, sr=16000)
# Convert to float32 numpy array
audio_input = audio_input.astype(np.float32)
# Process in chunks of 30 seconds with overlap
chunk_length = 30 * sr
overlap = 5 * sr # 5 seconds overlap
transcriptions = []
for i in range(0, len(audio_input), chunk_length - overlap):
chunk = audio_input[i:i+chunk_length]
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
transcriptions.extend(transcription)
# Join all transcriptions
full_transcription = " ".join(transcriptions)
print(f"Full transcription length: {len(full_transcription)} characters")
return full_transcription
except Exception as e:
print(f"Error in transcribe_audio: {str(e)}")
raise
def transcribe_video(url):
try:
print(f"Attempting to download audio from URL: {url}")
audio_bytes = download_audio_from_url(url)
print(f"Successfully downloaded {len(audio_bytes)} bytes of audio data")
# Convert audio bytes to AudioSegment
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
print(f"Audio duration: {len(audio) / 1000} seconds")
# Save as WAV file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
audio.export(temp_audio.name, format="wav")
temp_audio_path = temp_audio.name
print("Starting audio transcription...")
transcript = transcribe_audio(temp_audio_path)
print(f"Transcription completed. Transcript length: {len(transcript)} characters")
# Clean up the temporary file
os.unlink(temp_audio_path)
# Apply spelling correction and formatting
transcript = correct_spelling(transcript)
transcript = format_transcript(transcript)
return transcript
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(error_message)
return error_message
def download_transcript(transcript):
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as temp_file:
temp_file.write(transcript)
temp_file_path = temp_file.name
return temp_file_path
# Create the Gradio interface
with gr.Blocks(title="Video Transcription") as demo:
gr.Markdown("# Video Transcription")
video_url = gr.Textbox(label="Video URL")
transcribe_button = gr.Button("Transcribe")
transcript_output = gr.Textbox(label="Transcript", lines=20)
download_button = gr.Button("Download Transcript")
download_link = gr.File(label="Download Transcript")
transcribe_button.click(fn=transcribe_video, inputs=video_url, outputs=transcript_output)
download_button.click(fn=download_transcript, inputs=transcript_output, outputs=download_link)
demo.launch() |